c

Total Performance Visibility

Business Transaction Monitoring

[Restricted Rights Legend

The information contained in this document is confidential and subject to change without notice. No part of
this document may be reproduced or disclosed to others without the prior permission of eG Innovations Inc.
eG Innovations Inc. makes no warranty of any kind with regard to the software and documentation, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

[Trademarks

[Microsoft Windows, Windows 2008, Windows 2012, Windows 7, Windows 8, and Windows 10 are either
registered trademarks or trademarks of Microsoft Corporation in United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective
owners.

|Copyright

©2016 eG Innovations Inc. All rights reserved.

Table of Contents

INT RODUCTION e e e e e e 1
1.1 The eG Business Transaction Monitor (BTM) 1
1.2 Pre-requisites for Business Transaction Monitoring Using G 2
1.3 How does the eG BTM WorK? _ . e e 4

INSTALLING AND CONFIGURING EG BT M . e 6
2.1 Installing eG BTM on a Generic JVM Node e 6
2.2 Installing eG BTM on an Apache Tomeat Server - i 11

2.2.1 Agent-based Approach to Deploying eG BTM on an Apache Tomcat Server_ 11
2.2.2 Agentless Approach to Deploying eG BTM on an Apache Tomcat Server 19
2.3 Installing G BTM on an IBM WebSphere 25
2.3.1 Agent-based Approach to BTM-Enabling IBM WebSphere 25
2.3.2 Agentless Approach to BTM-Enabling an IBM WebSphere server 31
2.4 Installing eG BTM on an Oracle WebLogic Server e 34
2.4.1 Agent-based Approach to BTM-Enabling Oracle WebLogic Server i .. 34
2.4.2 Agentless Approach to BTM-Enabling an Oracle WebLogic server _......._o.......... 42
2.5 Installing G BTM on GlassFish i 47
2.5.1 Agent-based Approach to BTM-Enabling a GlassFish Server _ 47
2.5.2 Agentless Approach to BTM-Enabling an GlassFish server 54
2.6 Installing €G BTM on JBoss EA P ... 58
2.6.1 Agent-based Approach to BTM-Enabling a JBoss EAP Server 58
2.6.2 Agentless Approach to BTM-Enabling an JBoss EAP server 62
2.7 Installing eG BTM on JBoss WildF Ly e 65
2.7.1 Agent-based Approach to BTM-Enabling a JBoss WildFly Server 65
2.7.2 Agentless Approach to BTM-Enabling an JBoss WildFly server_ 69

MONITORING BUSINESS TRANSACTIONS e e e e e 74
3.1 Java Business Transactions TeSt e, 74
3.2 Key Java Business Transactions TeSt it 85
3.3 Detailed DIagnoStiCs 95

3.3.1 Detailed Diagnostics Revealing that an Inefficient Database Query is the Reason for a Slow Transaction _..._._.. 96
3.3.2 Detailed Diagnostics Revealing that a Slow JVM Node is Causing Transactions to Slowdown _._._._._........ 104
3.3.3 Detailed Diagnostics Revealing the Root-cause of an Error Transaction .._.._.._ _........... 107
3.3.4 Detailed Diagnostics Revealing that a Remote Service Call is the Reason Why a Transaction Slowed Down 109

CONCLUSION

Introduction

Introduction

A business transaction represents a type of user request to a web application. For instance, the following
types of requests are considered business transactions for an online retail banking application:

« Loggingin

« Balance checking
« Funds transfer

« Bill payments

« Logging out

User experience with a web application not only relies on the successful completion of these user
requests/transactions, but also on their rapid execution. This is why, even if a single transaction slows down,
stalls, or fails, user dissatisfaction with the web application as a whole grows. This in turn may cause user
complaints to increase, support costs to sky rocket, and revenues to dip.

To avoid such disastrous results, web application administrators should monitor every business transaction
closely and promptly identify the slow/stalled/failed transactions. Most importantly, administrators will have to
determine where and why these transactions under-performed — i.e., identify the root-cause of poor
transaction performance - so that the problem can be quickly resolved before users begin doubting the stability
of the web application.

Root-cause isolation is often the most challenging! This is because, most web applications these days
overlay multi-tier environments characterized by multiple application servers, database servers, remote
services, etc. Every business transaction to such web applications travels through multiple nodes, using
remote calls to external services, to fulfill its purpose. For example, an online transaction to shop for goods
may access a ShopCart web page on a web server. Every time an item is added to a shopping cart, the web
server may make an HTTP/S call to a web application server to invoke the business logic. The business logic
may then make a database call to run a query for retrieving the total count of goods that that user has shopped
for so far. A slowdown in even one node or a delay in processing even a single remote service call can impact
the performance of the transaction. To accurately isolate where the actual bottleneck lies, administrators
should employ an APM solution that can trace the entire path of every business transaction, measure the total
round-trip time of each transaction, identify the synchronous and asynchronous calls made by the transaction
at various nodes, and compute the time spent by the transaction at each node, for each call. This can be
achieved using the eG Business Transaction Monitor (BTM).

1.1 The eG Business Transaction Monitor (BTM)

The eG BTM employs an advanced ‘tag-and-follow’ technique to trace the complete path of each business
transaction to a web application, end-to-end. When doing so, it auto-discovers the application servers the

Introduction

transaction travels through, and also automatically ascertains what remote service calls were made by the
transaction when communicating with the servers. In the process, the eG BTM measures the following:

« The total response time of each transaction;
« The time spent by the transaction on each application server;

« The time spent by the transaction for processing every external service call (including SQL
queries);

Using these analytics, the eG BTM precisely pinpoints the slow, stalled, and failed transactions to the web
application, enables administrators to accurately isolate where — i.e., on which application server — the
transaction was bottlenecked, and helps them figure out exactly what caused the bottleneck — an inefficient or
errored query to the database? A slow HTTP/S call to another application server? a time-consuming POJO /
JMX method execution? a slow SAP JCO/async call? By quickly leading administrators to the source of
transaction failures and delays, the eG BTM facilitates rapid problem resolution, which in turn results in the
low downtime of and high user satisfaction with the web application.

1.2 Pre-requisites for Business Transaction Monitoring Using
eG

The following are the pre-requisites for performing business transaction monitoring using eG:
« Forthe eG Business Transaction Monitor to function, your eG Enterprise infrastructure should include:
o An eG Manager of version 6.2.0 (or above)
o eG Agents of version 6.2.0 (or above)

o An eG database on a Microsoft SQL Server 2008 (or above) (OR) An Oracle Database Server 9i (or
above)

« The eG Business Transaction Monitor (BTM) can be installed on Java containers only - i.e., Java
applications / J2EE-enabled web, application, and messaging servers. The details are as follows:

Supported JVMs
o Oracle Hotspot JVM 1.5t0 1.8
« BEAJRockit1.5and 1.6

o IBMJVM1.5t01.8

o« OpenJDK1.5t01.8
Supported Application Servers

o WebSphere 7.x, 8.x

« Weblogic 9.x, 10.x, 12.x

« JBoss 7.x/EAP / WildFly

Introduction

o Apache Tomcat 5.x, 6.x, 7.X, 8.x

o GlassFish 3.x and 4.x

Supported Frameworks

o Servlets
« JSPs
o Struts 1.x, 2.x
e Spring MVC
Supported HTTP End Points
« HTTP URL Connection
o Apache HTTP Client 3.x and 4.x

Supported Web Service End Points

o AXis 1.x, 2.x
o« JAX-WS
« JAX-RPC

Supported Databases

« Oracle 8i, 9i, 10g, 11g

« IBMDB29.x

« MS SQL Server 2005, 2008, 2012
« Postgres 8.x, 9.x

o MySQL
. HSQLDB

Supported Drivers

» Oracle- Thin

. DB2

« Microsoft SQL Server

« Connector/J

o jTDS -Typed

. JDBC2, JDBC2EE, JDBC3, JDBC4

Introduction

« The eG Business Transaction Monitor (BTM) can be installed on only those Java containers that
use JDK 1.5 or higher.

« Do not install the eG Business Transaction Monitor (BTM) on a Java container that is already JTM-
enabled.

« Forcross application transaction tracing to occur, the Java application being monitored should run only
on JRE 1.6 (or higher).

« Forcomplete visibility into the transaction path, make sure that you:
« BTM-enable each JVM node in the transaction path;

« Manage each JVM node as a separate component in eG;

1.3 How does the eG BTM Work?

To be able to track the live transactions to a web application, eG Enterprise requires that a special eG
Application Server Agent be deployed on every JVM node (i.e., web application server instance) through
which the transaction travels. The steps for deployment are discussed in Section .

Multi-tiered JVMs

-

N
e
t Web Server App Server App Server Database
. |:| —_— " T
Load : --—]\ [
User Accessing a Balancer ~k uj l,_ _tﬁ
Website or Web k — 3 i

Application

Web Server Server App Server Database

Injected code adds GUID to
each unigue transaction for
tag-and-follow tracing.

Byte code instrumentation
injects code into every
JWM at load time.

Figure 1.1: How eG BTM Works?

The eG Application Server Agent uses byte-code instrumentation to trace transaction path and measure
responsiveness. Using this instrumentation mechanism, the agent injects Java code into the JVM on which it
is deployed, at load time. The injected code adds a GUID to each unique transaction on a JVM, so that its

Introduction

path can be accurately traced . In addition, the agent performs the following tasks for every unique transaction
onaJVM:

« Tracks requests to that transaction;
« Measures the average responsiveness of that transaction to the requests;
« ldentifies the slow, stalled, and error transactions, and computes the count of such transactions;

« Ascertains the exit calls made by the transaction, the destination of the calls, and measures the time
taken by each call;

« Stores all the aforesaid statistics in memory

The eG agent deployed on a remote host or on the BTM-enabled JVM periodically runs a Java Business
Transactions test. This test communicates with the eG Application Server Agent via a configured BTM port,
pulls the metrics stored in memory, and reports them to the eG manager for display in the eG monitoring
console.

Installing and Configuring eG BTM

2
Installing and Configuring eG BTM

The first step towards business transaction monitoring is to BTM-enable the JVM nodes in the transaction
path. For thsi purpose, eG Enterprise requires that a special eG Application Server Agent be deployed on
every JVM node (i.e., web application server instance) through which the transaction travels.

The eG Application Server Agent is available as a file named eg_btm.jar on the eG agent host, which has
to be copied to the system hosting the application servers being monitored. You then need to configure the
application server with the path to the eg_btm.jar file to fully BTM-enable the server.

The detailed steps for deployment on different web application servers have been discussed in this section.

2.1 Installing eG BTM on a Generic JVM Node

The steps for deploying an eG BTM on a JVM node will differ based on where the eG agent has been deployed
- whether on the JVM node, or on a remote host.

If the eG agent monitoring the JVM node has been deployed on that node itself (which is the agent-based
approach), then follow the steps below to BTM-enable that node:

1. Manage the JVM node as a separate component using the eG administrative interface. When managing,
make a note of the Nick name and Port number that you provide.

2. If multiple JVM instances are operating on a single node, and you want to BTM-enable all the instances,
then you will have to manage each instance as a separate component using the eG administrative
interface. When doing so, make a note of the Nick name and Port number using which you managed
each instance.

3. In the <EG_AGENT_INSTALL_DIR> \lib\btm directory (on Windows; on Unix, this will be
lopt/egurkhallib/btm), you will find the following files:

« eg_btm.jar

« btmLogging.props
« btmOther.props

« exclude.props

4. Next, create a new directory under the <EG_AGENT_INSTALL_DIR>\lib\btm (on Windows; on Unix,
this will be /opt/egurkha/lib/btm). Take care to name this directory in the following format: <Managed
Component_ NickName>_ <Managed Component_Port>. For instance, if you have managed the
JVM node using the nick name AppServer1 and the port number 8088, the new directory under the btm
directory should be named as AppServer1_8080.

5. If you have managed multiple JVM instances running on a single node, then you will have to create
multiple sub-directories under the btm directory- one each for every instance. Each of these sub-

Installing and Configuring eG BTM

directories should be named after the Nick name and Port number using which the corresponding
instance has been managed in eG.

6. Once the new directory is created, copy the following files from the btm directory to the new directory:
« btmLogging.props
« btmOther.props
« exclude.props

7. Next, edit the btmOther.props file. You will find the following lines in the file:

Below property is BTM Server Socket Port, through which eG Agent Communicates
Restart is required, if any changes in this property

Default port is "13931"

BTM Port=13931
#

8. By default, the BTMPort parameter is set to 13931. If you want to enable eG BTM on a different port,
then specify the same here. In this case, when configuring the Java Business Transactions test or the
Key Java Business Transactions test for that application server, make sure you configure the BTM
port parameter of the test with this port number.

Note:
When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default setting. In
this case therefore, the eG BTM will treat the host from which the very first 'measure request' comes in
as the Designated_Agent.

Below property is used to specify IP address of eG Agent which collectes BTM Data.

Default is None

Designated Agent=

#

Installing and Configuring eG BTM

10.

Note:

In case a specific Designated_Agent is not provided, and the eG BTM treats the host from which the
very first 'measure request' comes in as the Designated_Agent, then if such a Designated_Agent is
stopped or uninstalled for any reason, the eG BTM will wait for a maximum of 10 measure periods for
that 'deemed' Designated_Agent to request for metrics. If no requests come in for 10 consecutive
measure periods, then the eG BTM will begin responding to 'measure requests' coming in from any other
eG agent.

Finally, save the btmOther.props file.

Then, proceed to edit the start-up script of the JVM node being monitored, and append the following
lines toit:

-DEG_PROPS HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

"-javaagent :<EG AGENT INSTALL DIR>\lib\btm\eg btm.jar”

For instance, if the .props files had been copied to the <EG_ AGENT_ INSTALL_
DIR>\lib\btm\AppServer1_8088 directory, the above specification will be:

-DEG_PROPS_HOME=<EG_AGENT INSTALL DIR>\lib\btm\AppServerl 8088

"-javaagent :<EG AGENT INSTALL DIR>\lib\btm\eg btm.jar”

Note:

« The “javaagent...” entry above should be added as one of the JVM options in the start-up script.

« Note that the above lines will change based on the operating system and the web/web application
server being monitored. For example, if the JVM node is operating on Unix, then the above
specification will change as follows:

-DEG_PROPS HOME=/opt/equrkha/lib/btm/AppServerl 8088
"-javaagent:/opt/egurkha/lib/btm/eg btm.jar”

« Also, in Unix environments, when using the agent-based approach, both the agent and the JVM
instance will be running using different user privileges. In this situation, by default, the eG BTM logs
will not be created. In order to create the same, insert the following entry after the -DEG_PROPS _
HOME specification.

-DEG_LOG_HOME=<<Log_File Path>>

Before providing this specification, make sure you create a folder for BTM logs - say, eGBTMLogs -
in any directory to which the target application server has access. Then, against, -DEG_LOG _
HOME, provide the full path to the eGBTMLogs directory. Where multiple instances on the same
server are to be BTM-enabled, you can use the same directory for writing log files of all instances.

Installing and Configuring eG BTM

For example, to create log files in the /App001/eGBTMLogs directory, the complete specification will
be as follows:

-DEG_PROPS_HOME=/opt/egurkha/lib/btm/AppServerl 8088
-DEG_LOG_HOME=/App001/eGBTMLogs
"-javaagent:/opt/egurkha/lib/btm/eg btm.jar”

11. Finally, save the file, and restart the JVM node.

If the eG agent has been deployed on a remote host (which is the agentless approach), then follow the steps
below to BTM-enable the JVM node:

1. Manage the JVM node as a separate component using the eG administrative interface. When managing,
make a note of the Nick name and Port number that you provide.

2. If multiple JVM instances are operating on a single node, and you want to monitor each of those
instances, then you will have to manage each instance as a separate component using the eG
administrative interface. When doing so, make a note of the Nick name and Port number using which
you managed each instance.

3. In the <EG_AGENT_INSTALL_DIR> \lib\btm directory (on Windows; on Unix, this will be
lopt/egurkhallib/btm), you will find the following files:

« eg_btm.jar
« btmLogging.props
« btmOther.props
« exclude.props
4. Next, loginto the JVM node that is being monitored.
5. Create a new directory named, say eGBTM, in any location on that node.

6. Under this directory, create a sub-directory. Take care to name this directory in the following format:
<Managed_Component_NickName>_<Managed Component_Port>. For instance, if you have
managed the JVM node using the nick name AppServer? and the port number 8088, the sub-directory
should be named as AppServer1_8080.

7. If you have managed multiple instances of that JVM node, then you will have to create multiple sub-
directories - one each for every instance. Each of these sub-directories should be named after the Nick
name and port number using which the corresponding instance has been managed in eG.

8. Once the new sub-directory is created, copy all the files from the btm directory of the remote agent to
the sub-directory on the JVM node:

9. Next, edit the btmOther.props file. You will find the following lines in the file:

Below property is BTM Server Socket Port, through which eG Agent Communicates

Installing and Configuring eG BTM

10.

11.
12.

Restart is required, if any changes in this property

Default port is "13931"

BTM Port=13931
#

By default, theBTM_Port parameter is set to 13931. If you want to enable eG BTM on a different port,
then specify the same here. In this case, when configuring the Java Business Transactions test or the
Key Java Business Transactions test for that application server, make sure you configure the BTM
PORT parameter of the test with this port number.

Note:
When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default setting. In
this case therefore, the eG BTM will treat the host from which the very first 'measure request' comes in
as the Designated_Agent.

Below property is used to specify IP address of eG Agent which collectes BTM Data.

Default is None

Designated Agent=

#

Note:

In case a specific Designated_Agent is not provided, and the eG BTM treats the host from which the
very first 'measure request' comes in as the Designated_Agent, then if such a Designated_Agent is
stopped or uninstalled for any reason, the eG BTM will wait for a maximum of 10 measure periods for
that 'deemed' Designated_Agent to request for metrics. If no requests come in for 10 consecutive
measure periods, then the eG BTM will begin responding to 'measure requests' coming in from any other
eG agent.

Finally, save the btmOther.props file.

Then, proceed to edit the start-up script of the JVM node being monitored, and append the following
lines toit:

10

Installing and Configuring eG BTM

13.
14.

-DEG_PROPS HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

"-javaagent :<<PATH OF THE LOCAL FOLDER CONTAINING THE eg btm.jar FILE>>"

For instance, if the .props files had been copied to the C:\eGBTM\AppServer1_8088 directory, the
above specification will be:

-DEG_PROPS_HOME=C:\eGBTM\AppServerl 8088

"-javaagent:C:\eGBTM\eg btm.jar”

Note:

« The “javaagent...” entry above should be added as one of the JVM options in the start-up script.

« Note that the above lines will change based on the operating system and the web/web application
server being monitored. For example, if the JVMnode is operating on Unix, then the above
specification will change as follows:

-DEG_PROPS HOME=/opt/eGBTM/AppServerl 8088

"-javaagent:/opt/eGBTM/eg btm.jar”

Then, add the eg_btm.jar file to the CLASSPATH of the JVM node being monitored.

Finally, save the file, and restart the JVM node.

2.2 Installing eG BTM on an Apache Tomcat Server

The steps for BTM-enabling an Apache Tomcat server will differ based on where the eG agent monitoring that
Tomcat server has been deployed - whether on the Tomcat server, or on a remote host.

2.2.1 Agent- based Approach to Deploying eG BTM on an Apache
Tomcat Server

If an Apache Tomcat Server is running on Windows, and the eG agent monitoring the server has been
deployed on that server itself, then follow the steps below to BTM-enable that Tomcat server:

1.

3.

Manage the Apache Tomcat server using the eG administrative interface. When managing, make a note
of the Nick name and Port number that you provide.

If multiple Tomcat server instances are operating on a single host, and you want to BTM-enable all the
instances, then you will have to manage each instance as a separate Apache Tomcat server using the
eG administrative interface. When doing so, make a note of the Nick name and Port number using
which you managed each instance.

Inthe <EG_AGENT_INSTALL_DIR>\lib\btm directory, you will find the following files:

11

Installing and Configuring eG BTM

« eg_btm.jar

« btmLogging.props
« btmOther.props

« exclude.props

4. Next, create a new directory under the <EG_AGENT_INSTALL_DIR>\lib\btm. Take care to name this
directory in the following format: <Managed Component_NickName>_<Managed Component_Port>.
For instance, if you have managed the Tomcat server using the nick name Tomcat1 and the port number
8080, the new directory under the btm directory should be named as Tomcat1_8080.

5. If you have managed multiple Tomcat server instances running on a single host, then you will have to
create multiple sub-directories under the btm directory- one each for every instance. Each of these sub-
directories should be named after the Nick name and Port number using which the corresponding
instance has been managed in eG.

6. Once the new directory is created, copy the following files from the btm directory to the new directory. If
multiple directories have been created as described by step 5 above, then the files should be copied to
each of those directories:

« btmLogging.props
« btmOther.props
« exclude.props

7. Next, edit the btmOther.props file. You will find the following lines in the file:

Below property is BTM Server Socket Port, through which eG Agent Communicates
Restart is required, if any changes in this property

Default port is "13931"

BTM Port=13931
#

By default, theBTMPort parameter is set to 13931. If you want to enable eG BTM on a different port,
then specify the same here. In this case, when configuring the Java Business Transactions test or the
Key Java Business Transactions test for that application server, make sure you configure the BTM
port parameter of the test with this port number.

Note:
When BTM-enabling multiple instances on the same server, make sure you configure a different

BTM Port for each instance.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default setting. In

12

Installing and Configuring eG BTM

this case therefore, the eG BTM will treat the host from which the very first 'measure request' comes in
as the Designated_Agent.

Below property is used to specify IP address of eG Agent which collectes BTM Data.

Default is None

Designated Agent=

#

Note:

In case a specific Designated_Agent is not provided, and the eG BTM treats the host from which the
very first 'measure request' comes in as the Designated_Agent, then if such a Designated_Agent is
stopped or uninstalled for any reason, the eG BTM will wait for a maximum of 10 measure periods for
that 'deemed' Designated_Agent to request for metrics. If no requests come in for 10 consecutive
measure periods, then the eG BTM will begin responding to 'measure requests' coming in from any other
eG agent.

8. Then, you need to configure the Tomcat server with the path to the eg_btm.jar and .props files. This
can be done, in one of the following ways:

« Through the Tomcat control panel;

« Through the Tomcat start-up script

9. Touse the control panel, do the following:

13

Installing and Configuring eG BTM

« First, open the Tomcat Control Panel.

General | Log On | Logging | Java | Startup | Shutdown

[] use default
Java Virtual Machine:

C:\jdk7jreVbintserverjvm.dil
Java Classpath:
C:\Program Files (x86)\Apache Software Foundation{Tomecat 7.0_Tomcat

Jawa Options:

-Djava.util.logging. config. file=C:\Program Files (x86)\Apache Softwa »
-Javaagent:C:\eGurkhalibibtm\tomcatl_s080%qg_bim.jar
-DEG_PROPS_HOME:C: \eGurkhalfibbtm {tomeat1_8080

Initial memory poal 2043
Maximum memary pool: | 2048

Thread stack size:

Figure 2.1: BTM-enabling the Tomcat server on Windows
« Select the Java tab page in Section 2.2 above.

« Add the following entry to the Java Options section of 2.2:

-javaagent :<EG AGENT INSTALL DIR>\lib\btm\eg btm.jar

-DEG PROPS HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

For instance, if the .props files had been copied to the <EG_ AGENT_ INSTALL_
DIR>\lib\btm\tomcat1_8080 directory, the above specification will be:

-javaagent :<EG AGENT INSTALL DIR>\1lib\btm\eg btm.jar
-DEG_PROPS_ HOME=<EG_AGENT INSTALL DIR>\lib\btm\tomcatl 8080
« Click the Apply and OK buttons in 2.2.
« Restart the Tomcat service.
10. Onthe other hand, if you want to configure using the Tomcat start-up script, follow the steps below:
« Open the catalina.bat file from the <TOMCAT_HOME> directory on the Tomcat server.

« Insert the lines of code indicated by 2.2 above to BTM-enable the Tomcat server.

14

Installing and Configuring eG BTM

11.

Figure 2.2: Editing the catalina.batfile
« Save the file and restart the Tomcat server.

Where multiple Tomcat server instances on a host are to be monitored, repeat 7 to 10 for each of the
server instances.

If an Apache Tomcat Server is running on Unix, and the eG agent monitoring the server has been deployed on
that server itself, then follow the steps below to BTM-enable that Tomcat server:

1.

Manage the Apache Tomcat server using the eG administrative interface. When managing, make a note
of the Nick name and Port number that you provide.

If multiple Tomcat server instances are operating on a single host, and you want to BTM-enable all the
instances, then you will have to manage each instance as a separate Apache Tomcat server using the
eG administrative interface. When doing so, make a note of the Nick name and Port number using
which you managed each instance.

In the /opt/egurkha/lib/btm directory, you will find the following files:

. eg_btm.jar

« btmLogging.props
« btmOther.props

« exclude.props

Next, create a new directory under the /opt/egurkhallib/btm. Take care to name this directory in the
following format: <Managed Component_NickName>_<Managed Component_Port>. For instance, if
you have managed the Tomcat server using the nick name Tomcat and the port number 8080, the new
directory under the btm directory should be named as Tomcat_8080.

If you have managed multiple Tomcat server instances running on a single host, then you will have to
create multiple sub-directories under the btm directory- one each for every instance. Each of these sub-
directories should be named after the Nick name and Port number using which the corresponding
instance has been managed in eG.

15

Installing and Configuring eG BTM

6. Once the new directory is created, copy the following files from the btm directory to the new directory. If
multiple directories have been created as described in step 5 above, then the following files should be
copied to all directories:

« btmLogging.props
« btmOther.props
« exclude.props

7. Next, edit the btmOther.props file. You will find the following lines in the file:

Below property is BTM Server Socket Port, through which eG Agent Communicates
Restart is required, if any changes in this property

Default port is "13931"

BTM Port=13931
#

By default, theBTMPort parameter is set to 13931. If you want to enable eG BTM on a different port,
then specify the same here. In this case, when configuring the Java Business Transactions test or the
Key Java Business Transactions test for that application server, make sure you configure the BTM
port parameter of the test with this port number.

Note:
When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default setting. In
this case therefore, the eG BTM will treat the host from which the very first 'measure request' comes in
as the Designated_Agent.

Below property is used to specify IP address of eG Agent which collectes BTM Data.

Default is None

Designated Agent=

#

16

Installing and Configuring eG BTM

Note:

In case a specific Designated_Agent is not provided, and the eG BTM treats the host from which the
very first 'measure request' comes in as the Designated_Agent, then if such a Designated_Agent is
stopped or uninstalled for any reason, the eG BTM will wait for a maximum of 10 measure periods for
that 'deemed' Designated_Agent to request for metrics. If no requests come in for 10 consecutive
measure periods, then the eG BTM will begin responding to 'measure requests' coming in from any other
eG agent.

8. Then, you need to configure the Tomcat server with the path to the eg_btm.jar and .props files. This
can be done by editing the start-up script of the Tomcat server. For that, first open the start-up script.

9. Insert the following lines in the script (as depicted by Figure 2.3) to BTM-enable the server.

if ["$1" = "start" -o "$1" = "run"]; then

export JAVA OPTS="$JAVA OPTS - javaagent:<<PATH TO THE eg btm.jar>> -DEG_PROPS_
HOME=<<PATH TO LOCAL FOLDER CONTAINING THE

.PROPS FILES>>

fi

For instance, if the .props file had been copied to the Tomcat_8080 folder within the
lopt/egurkhallib/btm folder, then your specification will be as follows:

if ["$1" = "start" -o "$1" = "run"]; then

export JAVA OPTS="$JAVA OPTS -javaagent:/opt/egurkha/lib/btm/eg btm.jar -DEG_PROPS
HOME=/opt/egurkha/lib/btm/Tomcat 8080

fi

17

Installing and Configuring eG BTM

10.

11.
12.

Pt b g e S e G e o e e i e G (] e e e

done

Get standard environment variables
PREDIR="dirnams “§FRG""

Only set CATALINA HOME if not already set
[=z "SCATALINAR HOME®™]| && CATRLINR HOME="cd “§FRGDIR/.." >/dev/oull; pwd”

Copy CATALINA BASE from CATALINA_BEOME if not already set
[-z "SCATALINA_BREE®] ss CATRLINR_BASE="SCATALINR_HOME®

Enaure that any user defined CLASSPATH variablea are not used on starcup,
but allow them to be specified in secenv.sh, in rare case when it is needed.

CLRESFRTH=

faeteny.sh”
{E/bin/setenv.ah™]1; then
faetenv.sh”

"ECATALINA_HOME" "
, BASE="cygpath =-unix "SCATALINA BASE""
" 1 && CLASSPATH= cygpath --path --unix “§CLRASSERATH"

thi
& will e ronnine ar rhe same nrinrire as interacrise Gnhe

| <

Figure 2.3: Editing the start-up script of a Tomcat server on Linux to BTM-enable the server

In Unix environments, if the eG agent is deployed on the same host as the Tomcat server, then both the
agent and the server will be running using different user privileges. In this situation, by default, the
eG BTM logs will not be created. In order to create the same, insert the following entry after the -DEG _
PROPS_HOME specification and before the closing quotes .

-DEG_LOG_HOME=<LogFile Path>

Before providing this specification, make sure you create a folder for BTM logs - say, eGBTMLogs - in
any directory to which the target application server has access. Then, against, -DEG_LOG_HOME,
provide the full path to the eGBTMLogs directory. Where multiple instances on the same server are to
be BTM-enabled, you can use the same directory for writing log files of all instances.

For example, to create log files in the /App001/eGBTMLogs directory, the complete specification will
be as follows:

if ["$1" = "start" -o "$1" = "run"]; then

export JAVA OPTS="$JAVA OPTS -javaagent:/opt/egurkha/lib/btm/eg btm.jar -DEG PROPS
HOME=/opt/egurkha/lib/btm/Tomcat 8080 -DEG LOG_HOME=/App001/eGBTMLogs

fi

Finally, save the file and restart the Tomcat server.

Where multiple Tomcat server instances on a host are to be monitored, repeat steps 7 to 11 for each of
the serverinstances.

18

Installing and Configuring eG BTM

2.2.2 Agentless Approach to Deploying eG BTM on an Apache Tomcat
Server

If an Apache Tomcat Server is running on Windows, and the eG agent monitoring the server has been
deployed on a remote host in the environment, then follow the steps below to BTM-enable that Tomcat server:

1.

Manage the Apache Tomcat server as a separate component using the eG administrative interface.
When managing, make a note of the Nick name and Port number that you provide.

If multiple Tomcat instances are operating on a single node, and you want to monitor each of those
instances, then you will have to manage each instance as a separate Apache Tomcat server using the
eG administrative interface. When doing so, make a note of the Nick name and Port number using
which you managed each instance.

In the <EG_AGENT_INSTALL_DIR>\lib\btm directory (on Windows; on Unix, this will be the
/opt/egurkhallib/btm directory) on the eG agent host, you will find the following files:

. eg_btm.jar

« btmLogging.props

« btmOther.props

« exclude.props

Next, log into the Tomcat server that is being monitored.

Create a new directory named, say btm, in any location on that server.

Under this directory, create a sub-directory. Take care to name this directory in the following format:
<Managed_ Component_ NickName>_ <Managed Component_Port>. For instance, if you have
managed the Tomcat server using the nick name tomcat1 and the port number 8080, the sub-directory
should be named as tomcat1_8080.

If you have managed multiple instances of the Tomcat server, then you will have to create multiple sub-
directories - one each for every instance. Each of these sub-directories should be named after the Nick
name and port number using which the corresponding instance has been managed in eG.

Once the new sub-directory is created, copy all the files from the btm directory of the remote agent to
the sub-directory on the Tomcat server. Where multiple sub-directories have been created, you will have
to copy the files to each of those directories.

Next, edit the btmOther.props file. You will find the following lines in the file:

Below property is BTM Server Socket Port, through which eG Agent Communicates
Restart is required, if any changes in this property

Default port is "13931"

19

Installing and Configuring eG BTM

10.

11.
12.

#
BTM Port=13931
#

By default, theBTM_Port parameter is set to 13931. If you want to enable eG BTM on a different port,
then specify the same here. In this case, when configuring the Java Business Transactions test or the
Key Java Business Transactions test for the Tomcat server, make sure you configure the BTM PORT
parameter of the test with this port number.

Note:
When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default setting. In
this case therefore, the eG BTM will treat the host from which the very first 'measure request' comes in
as the Designated_Agent.

Below property is used to specify IP address of eG Agent which collectes BTM Data.

Default is None

Designated Agent=

#

Note:

In case a specific Designated_Agent is not provided, and the eG BTM treats the host from which the
very first 'measure request' comes in as the Designated_Agent, then if such a Designated_Agent is
stopped or uninstalled for any reason, the eG BTM will wait for a maximum of 10 measure periods for
that 'deemed' Designated_Agent to request for metrics. If no requests come in for 10 consecutive
measure periods, then the eG BTM will begin responding to 'measure requests' coming in from any other
eG agent.

Finally, save the btmOther.props file.

Then,proceed to configure the Tomcat server with the path to the eg_btm.jar and .props files. This can
be done, in one of the following ways:

« Through the Tomcat control panel;

« Through the Tomcat start-up script

20

Installing and Configuring eG BTM

13. Touse the control panel, do the following:

« First, open the Tomcat Control Panel.

General | Log On | Loggng | J&va | Startup | Shuidown

[use defauit
Java Virtual Machine:

Ci gk 7 gre\n earver yjvm.dl

Java Classpath:
C:'\Program Fles (x55) \Apache Software FoundationTamcat 7.0_Temcat

Java Opbons:

- PermSize =256M
“javaagent=E; \btmitomcat]l_S080%g_btm,jar
l-DEE_PROPS_HﬂHE:E:Wh'lmmuﬂ_E:IW

Initial mamory pool: 1024
Mawmum memory poal: | 1024
Thread stadk sire:

Figure 2.4: BTM-enabling the Tomcat server on Windows in an agentless manner
14. Select the Java tab page in Figure 2.4 above.
15. Add the following entry to the Java Options section of Figure 2.4:

-javaagent :<<PATH OF THE LOCAL FOLDER CONTAINING THE eg btm.jar FILE>>

-DEG_PROPS HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

For instance, if the jar file and .props files had been copied to the E:\btm\tomcat1_8080 directory, the
above specification will be:

-javaagent:E:\btm\tomcatl 8080\eg btm.Jjar
-DEG_PROPS_HOME=E:\btm\tomcatl 8080

16. Click the Apply and OK buttons in 2.2.

17. Restart the Tomcat service.

18. On the other hand, if you want to configure using the Tomcat start-up script, follow the steps below:
« Open the catalina.bat file from the <TOMCAT_HOME> directory on the Tomcat server.

« Insert the lines of code indicated by Figure 2.5 above to BTM-enable the Tomcat server.

21

Installing and Configuring eG BTM

barch Document Project Tools Browser ZC Window Help
CALIE BENER g | £ fe & | Af e wElilllv | D@ B =) k2

e T e T e A] i L o e Il e Wt et o

] <

if not “SCATALINA_TMPDIRI™ == =" goto gotImpdir
g2t "CATALINA THMPDIR=%CATALINA BASEY‘\Cemp"
:gocTmpdir

rem Add tomcat-juli.jar to classpath

rem tomcat-juli.jar can be over-riddsn per instance

if mot exist "$CATALINA_BASER\bin\tomcat-juli.jar® goto juliClasspachAoms
et "CLASSPATH=%CLASSPATHY;ICATALINA BASE%\bin\comcact-jull.jar™

goto juliClasspathDons

sjuliClasaspathiome

set "CLASSPATH=%CLASSPATHY;ICATALINA HOME%\bin\comcact-jull.jar™
sjuliClasspathlone

if not “$LOGEING_CONFIGE™ == "7 goto noJuliConfig

get LOGGING_COWEIG=-Dnop

if not exist "$CATALINA_BASEY\cecnf\logging.properties”™ goto moduliConfig

set LOGGING COWFIG=-Ddava.util.logging.config.file="3CATALINA_BASEY\conf\logging.properties”
snoduliConfig

get "JAVA OPTS=tJAVA OPFTS% TLOGEING CONFIGE™

get "JAVA OFTS=%JAVIA OPTS% -—javaagent:E:\brm\comcacl E0EBQ\eg btm.jar -DEG PROPS HOME:E:\btm\tomcacl EQE0"

if not “$LOGGING_MANAGERY™ == =" goto noJuliManager

set LOGGING_MANAGER=-Djava.util.logging.manager=org.apache.juli.ClassloaderLogManager
tnoJuliManager

et "JAVA_OFTIS=%JAVA_OPTS5% ILOGGING_MAMNAGERT"

R Execure The Requeared COMMERE ——-—-————mmmmmmm oo m oo e

echo Using CATALINA_BRASE: "%CATALINA BASER™
echo Using CATALINA_HOME: "%CATALINA HOMER™
echo Using CATALINA_TMPDIR: "3%CATALINA TMPDIRE™
if ""%1"" = ""debug~" goto use_jdk

echo Using JRE_HOME: "$JRE_HOMEL™
goto java_dir displayed
tuse jdk

Figure 2.5: Editing the catalina.bat file of a Tomcat server on Windows that is monitored in an agentless

manner

Save the file and restart the Tomcat server.

19. Where multiple Tomcat server instances on a host are to be monitored, repeat steps 9 to 18 for each of

the serverinstances.

If an Apache Tomcat Server is running on Unix, and the eG agent monitoring the server has been deployed on
aremote host in the environment, then follow the steps below to BTM-enable that Tomcat server:

1.

Manage the Apache Tomcat server using the eG administrative interface. When managing, make a note
of the Nick name and Port number that you provide.

If multiple Tomcat server instances are operating on a single host, and you want to BTM-enable all the
instances, then you will have to manage each instance as a separate Apache Tomcat server using the
eG administrative interface. When doing so, make a note of the Nick name and Port number using
which you managed each instance.

In the <EG_AGENT_INSTALL_DIR>\lib\btm directory (on Windows; on Unix, this will be the
lopt/egurkhallib/btm directory) on the eG agent host, you will find the following files:

22

Installing and Configuring eG BTM

10.

« eg_btm.jar

« btmLogging.props

« btmOther.props

« exclude.props

Next, log into the Tomcat server that is being monitored.

Create a new directory named, say btm, in any location on that server.

Under this directory, create a sub-directory. Take care to name this directory in the following format:
<Managed_ Component_ NickName>_ <Managed_ Component_ Port>. For instance, if you have
managed the Tomcat server using the nick name Tomcat and the port number 8080, the sub-directory
should be named as Tomcat_8080.

If you have managed multiple instances of the Tomcat server, then you will have to create multiple sub-
directories - one each for every instance. Each of these sub-directories should be named after the Nick
name and port number using which the corresponding instance has been managed in eG.

Once the new sub-directory is created, copy all the files from the btm directory of the remote agent to
the sub-directory on the Tomcat server. Where multiple sub-directories have been created, you will have
to copy the files to each of those directories.

Next, edit the btmOther.props file. You will find the following lines in the file:

Below property is BTM Server Socket Port, through which eG Agent Communicates
Restart is required, if any changes in this property

Default port is "13931"

BTM Port=13931
#

By default, theBTM_Port parameter is set to 13931. If you want to enable eG BTM on a different port,
then specify the same here. In this case, when configuring the Java Business Transactions test or the
Key Java Business Transactions test for the Tomcat server, make sure you configure the BTM PORT
parameter of the test with this port number.

Note:
When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default setting. In
this case therefore, the eG BTM will treat the host from which the very first 'measure request' comes in
as the Designated_Agent.

23

Installing and Configuring eG BTM

11.
12.

13.

Below property is used to specify IP address of eG Agent which collectes BTM Data.

Default is None

Designated Agent=

#

Note:

In case a specific Designated_Agent is not provided, and the eG BTM treats the host from which the
very first 'measure request' comes in as the Designated_Agent, then if such a Designated_Agent is
stopped or uninstalled for any reason, the eG BTM will wait for a maximum of 10 measure periods for
that 'deemed' Designated_Agent to request for metrics. If no requests come in for 10 consecutive
measure periods, then the eG BTM will begin responding to 'measure requests' coming in from any other
eG agent.

Finally, save the btmOther.props file.

Then, proceed to configure the Tomcat server with the path to the eg_btm.jar and .props files. For this,
you need to edit the start-up script of Tomcat. The first step to achieving that is to open the start-up
script file.

Insert the following lines in the file, as depicted by Figure 2.6.

if ["$1" = "start" -o "$1" = "run"]; then

export JAVA OPTS="$JAVA OPTS - javaagent:<<PATH TO THE eg btm.jar>> -DEG PROPS
HOME=<<PATH TO THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>"

fi

For instance, if the eg_btm.jar and .props files were copied to the /opt/btm/Tomcat_8080 directory on
the Tomcat server, then your specification will be as follows:

if ["S$1" = "start" -o "$1" = "run"]; then

export JAVA OPTS="$JAVA OPTS -javaagent:/opt/btm/Tomcat 8080/eg btm.jar -DEG_ PROPS
HOME=/opt/btm/Tomcat 8080"

fi

24

Installing and Configuring eG BTM

|-—l-+—---‘.---—+--—-2-—--+——--3—--—+--——l:--—-+-—--5—---1---—6--—-+-——-'J——--+—---5---—+--—-9-—--+—---|f

done

G2t atandard environment variables
FREDIR="dirnams "“§FHG"™"

+ Only et CATALINA BOME 1if not already Bet
[—= "fCATALIHA BOME™] &t CATALIMA HOME="cd “§PREDIR/.." >/dev/null; pwd"

Copy CATALINA BASE from CATALIMA HOME if not already set
=% "FCATALINA BASE™] && CAIALINA BASE="SCATALINA HOHE"

— -

¥ Ensure thac any user defined CLASIPATH varisbles are not used on sStartup,
§ but allow them to be specified in setenv.sh, in rare case when it iz needed.
CLASSFATH=

if [-r "§CRTALINA_BASE/bin/setenv.sh”™]; then
. "SCATALINA_BASE/bin/setenv.sh®

elif | =r "§CATALINA HOME bin/aseteov.sh® |:; then
. "ECATALIHA_HOME/bin/setenwv.sh™

FROPS HOME=/opt/brm/Tomcac 80E0"

¢ For Cygwin, enzure paths are in UNIX format before anything is touched
if fcygwin: then
[-8 "$JAVA_HOME" | && JRVA_HOME="cygpath ——unix "$JAVA_BOME™
[-n "¢JRE_HOME®] & JRE_ROME='cygpath ——unix "&JRE_HOME""
[=n "GCATALINA HOME® | & CATALINA HOME-"cygpath --unix “SCATALINA HOME="
[=n "fCRTALINAR BASE"™]| && CATALINR BASE="cygpath --unix “SCATALINA BASE™"

Figure 2.6: Editing the start-up script to BTM-enable a Tomcat server on Linux in an agentless manner

14. Finally, save the file and restart the Tomcat server.

15. Where multiple Tomcat server instances on a host are to be monitored, repeat steps 9 to 14 for each of
the serverinstances.

2.3 Installing eG BTM on an IBM WebSphere

The steps for BTM-enabling an IBM WebSphere server will differ based on where the eG agent monitoring that

WebSphere server has been deployed - whether on the WebSphere server, or on a remote host.

2.3.1 Agent-based Approach to BTM-Enabling IBM WebSphere

If an IBM WebSphere server is running on Windows, and the eG agent monitoring the server has been

deployed on that server itself, then follow the steps below to BTM-enable that WebSphere server:

1.

3.

Manage the WebSphere server using the eG administrative interface. When managing, make a note of
the Nick name and Port number that you provide.

If multiple WebSphere server instances are operating on a single host, and you want to BTM-enable all
the instances, then you will have to manage each instance as a separate WebSphere server using the
eG administrative interface. When doing so, make a note of the Nick name and Port number using
which you managed each instance.

Inthe <EG_AGENT_INSTALL_DIR>\lib\btm directory, you will find the following files:

25

Installing and Configuring eG BTM

« eg_btm.jar

« btmLogging.props
« btmOther.props

« exclude.props

4. Next, create a new directory under the <EG_AGENT_INSTALL_DIR>\lib\btm. Take care to name this
directory in the following format: <Managed_Component_NickName>_<Managed Component_Port>.
For instance, if you have managed the WebSphere server using the nick name Websphere1 and the port
number 9080, the new directory under the btm directory should be named as Websphere1_9080.

5. If you have managed multiple WebSphere server instances running on a single host, then you will have
to create multiple sub-directories under the btm directory- one each for every instance. Each of these
sub-directories should be named after the Nick name and Port number using which the corresponding
instance has been managed in eG.

6. Once the new directory is created, copy the following files from the btm directory to the new directory. If
multiple directories have been created as described in step 5 above, then the following files should be
copied to all directories:

« btmLogging.props
« btmOther.props
« exclude.props

7. Next, edit the btmOther.props file. You will find the following lines in the file:

Below property is BTM Server Socket Port, through which eG Agent Communicates
Restart is required, if any changes in this property

Default port is "13931"

BTM Port=13931
#

By default, theBTMPort parameter is set to 13931. If you want to enable eG BTM on a different port,
then specify the same here. In this case, when configuring the Java Business Transactions test or the
Key Java Business Transactions test for the WebSphere server, make sure you configure the BTM
port parameter of the test with this port number.

Note:
When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default setting. In

26

Installing and Configuring eG BTM

this case therefore, the eG BTM will treat the host from which the very first 'measure request' comes in
as the Designated_Agent.

Below property is used to specify IP address of eG Agent which collectes BTM Data.

Default is None

Designated Agent=

#

Note:

In case a specific Designated_Agent is not provided, and the eG BTM treats the host from which the
very first 'measure request' comes in as the Designated_Agent, then if such a Designated_Agent is
stopped or uninstalled for any reason, the eG BTM will wait for a maximum of 10 measure periods for
that 'deemed' Designated_Agent to request for metrics. If no requests come in for 10 consecutive
measure periods, then the eG BTM will begin responding to 'measure requests' coming in from any other
eG agent.

8. Then, you need to configure the WebSphere server with the path to the eg_btm.jar and .props files. For
this, first login to the WebSphere administration console. When Figure 2.7 appears, click on the
WebSphere Application Server link in the right panel.

Welcome

| welcoena 7 _ O Abou thi Inograted Solutions Consale _ [J

Views: All tasks b |

H Guided Astiities Integrated Solutions Console,
B.5.5.0
Build Numbar:

Build Diake: 5

Integrated Solutions Console provides a common administrative consale for multiple products. The table lists the product suites that

-| Sarvarz can be administered through this installation. Select a product suite to view more information. 390,01

= Server Types

Suite Name Verslon .
LICENSED MATERIALS PROPERTY

8.5.5.0
£es0 OF 18M

| Applications

+ Services

Resources

B Seourky

i Enviromment

il Sysvem administmtion
i Users and Groups

& Menitoring and Tuning
Troubleshooting

H Service integrazion

B JoDI

Figure 2.7: The WebSphere Administration console

9. This will invoke Figure 2.8. In the right panel of Figure 2.8, click on the link representing the WebSphere

27

Installing and Configuring eG BTM

server instance that you want to BTM-enable.

[

Views | All tasks

Wekame
) Guided Activities
= Servers
) Sener Types
wabsphare MQ servers
(# Agplcations
3 Sanices
(3 Bezources
& Securty
(3 Emvironmant.
6 System administration
) Users and Groups
) Monkering and Tuning
(3 Troubleshosting

31 Sanvice intagration

@ upDt

wabsphers applcation servers

Application servers

Usa this page to view a list of the application servers in your snvi

the status of & specific application server
Fraferances

ironment and the status of each of thess servers. You can also use this page to change

=
P

Name & Node &

Host Name & Version 2

You can administer the following resources:

Fiald help

For flald halp information,
select » field label or list
marker when the help cursar is
*)

..... 1 | #GOPL3SModets

_ ®GOP138.Mas. eGlnnovations.cam | ND £.5.3.0

10. Figure 2.9 will then appear.

‘WebSphere.

Figure 2.8: Clicking on the WebSphere server instance to be BTM-enabled

| View: | Al tasks v

wekome
% Guided Activities
(=) Servers
= Serwer Types
wiabSphere application servers

wishSphars MQ sarvers

wieh servers

[+ Appleations

(% Services

&) Fasources

[# Security

(#) Environmant

(% System administration
(&) Users and Groups

[Manitering and Tuning
(& Troubleshooting

[# Service integration

|2 wDD!

| |#pplication servers

Application servers > serverl

Usa this page to cenfigure an application server. An application zerver iz 3 server that provides services required to run enterprise applications.

Runtime | | Configuration

Close page

Fiald halp

For figld halp information,
select a field label or list
marker when the help cursor
iz dizplayed.

General

Nama

[servent |

Node name
[eoDP13sNedent]

) Run in development mode
¥ Parallel start

| Start components as needed

Access to Inbemal server classes
Allow ¥

Server-specific Application Settings

Classloader rlitv

Class loading meds

| Classes loaded with parent class ioader first

| ppty || OK | Reset || Cancel

Container Settings

Paga halp
More information about this
pags

Session management
SIP Container Settings

Wieb Container Settings

EJB Container Sattings

)
®
@ Portlet Container Settings
#
Container Services

iz

Business Process Services

Server

Messaging engines

[i ine ink tram
Sphere MG link § N
£I1E service

Server Infrastructure

@ Java and Process Management
E Administration

Java SDKs

Communications

Figure 2.9: The Configuration tab page of the WebSphere server instance to be BTM-enabled

11. Keep scrolling down the right panel of Figure 2.10 until you find the Server Infrastructure section.
Expand the Java and Process Management node in that section, and click on the Process definition

link within.

28

Installing and Configuring eG

WetSphere.

View: | Al tazks L

Welcome

(@ Guided Activities

= Servers

(= Servar Types

WebSphere applcation servers
WebSghere MQ servers
Web servers

£ Apabcations

Services

F Rescurces

8 Securky

Envirenment

& System adminiszration

 Users snd Groups

(3 Monitoring and Tuning

& Troubleshocting

(3 Sarvica intagration

£ DT

BTM

= Run in development mode
I parallel start

L Start companents az needed

Access bo internal server classes

Server-specific Application Settings

Classloader iﬁ wlicy

Class loading mods

Claszes [oaded with parent class Inader first v

_gply || OK || Reset || Cancel |

B POILGL CONGaIner Setungs

@ DB Container Settings

Field help
For field help information,
seloct 3 fiald labsl or list

marker when lp cursor
is displayed.
e Page help
More information about this
Server face

Meszaging engines

Msssaging engine int ran
‘ebsphere 199 link inbound transports
1B service

Server Infrastructure

S Java and Process Management

Clasz lzader

Procsss dafinition
Progess execution

B Administration

Java SDKs
@ Barts
8 Meszaging
[o! igati Enabled {CEA)
rf -
Menitoring LPML
and Diagnostic Advisor G
Security

Figure 2.10: Selecting the Process definition option from Java and Process Management tree

12. Figure 2.11 will then appear. From the Additional Properties section, select Java Virtual Machines.

WebSphers

View: | All tasks. v

H Envirgnment
) Eysvam admiiztmazon

& Users and Groups

8 Manitoring and Tuning
& Traubkshooting

) Service incegration

i+ voos

Application servers > serverl > Process definition

Use this page te senfigure a process definition. A process definition defines the cemmand line Infarmation necessary to stark or Initialize a process.

Configuration

Canaral Propartios

Executable name

Exscutable argumants

Start command

Start command srguments

Stop command

Stop command arguments

Working directory
[4{USER_INSTALL_ROOT}

Exscutsble target bype

Close page

[—— ? B CTE—

Field help

For field help informatien.
select a field label or list
marker whan the help eurser
s displayed.

Page help
Mors information about this
Eage

Additional Properties

13. When Figure 2.12 appears, scroll down its right panel until the Generic JVM Arguments text box

comes into view.

Figure 2.11: Configuring the Process definition

29

Installing and Configuring eG BTM

Apoly | OK | [Reset | [Cancel

Figure 2.12: Configuring the JVM arguments
14. Here, specify the following:

-javaagent :<EG AGENT INSTALL DIR>\lib\btm\eg btm.jar

-DEG PROPS HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

For instance, if the .props files had been copied to the <EG_ AGENT_ INSTALL_
DIR>\lib\btm\Websphere1_9080 directory, the above specification will be:

-javaagent :<EG_AGENT INSTALL DIR>\1lib\btm\eg btm.jar

-DEG_PROPS HOME=<EG AGENT INSTALL DIR>\lib\btm\Webspherel 9080

15. Save the changes and restart the WebSphere server.

If an IBM WebSphere server is running on Unix, and the eG agent monitoring the server has been deployed on
that server itself, then follow the steps below to BTM-enable that WebSphere server:

1. Follow the steps 1-13 above. When doing so, note that the eg_btm.jar and the .props files will be
available in the /opt/egurkhallib/btm directory on the Unix host.

2. Inthe Generic JVM Arguments text box mentioned in step 13 (see Figure 2.12), specify the following:

-javaagent:<<PATH TO THE eg btm.jar FILE>>

-DEG PROPS HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

For instance, if the .props files had been copied to the /opt/egurkhallib/btm/Websphere1_9080
directory, the above specification will be:

-javaagent:/opt/egurkha/lib/btm/eg btm.Jjar

30

Installing and Configuring eG BTM

-DEG_PROPS HOME=/opt/egurkha/lib/btm/WebSpherel 9080

In Unix environments, if the eG agent is deployed on the same host as the WebSphere server, then both
the agent and the server will be running using different user privileges. In this situation, by default, the
eG BTM logs will not be created. In order to create the same, insert the following entry after the -DEG __
PROPS_HOME specification .

-DEG_LOG HOME=<LogFile Path>

Before providing this specification, make sure you create a folder for BTM logs - say, eGBTMLogs - in
any directory to which the target application server has access. Then, against, -DEG_LOG_HOME,
provide the full path to the eGBTMLogs directory. Where multiple instances on the same server are to be
BTM-enabled, you can use the same directory for writing log files of all instances.

For example, to create log files in the /App001/eGBTMLogs directory, the complete specification will
be as follows:

-javaagent:/opt/egurkha/lib/btm/eg btm.jar
-DEG_PROPS_HOME=/opt/egurkha/lib/btm/WebSpherel 9080

-DEG_LOG_HOME=/App001/eGBTMLogs

4. Save the file and restart the WebSphere server.

2.3.2 Agentless Approach to BTM-Enabling an IBM WebSphere server

If an IBM WebSphere server is running on Windows, and the eG agent monitoring the server has been
deployed on a remote host in the environment, then follow the steps below to BTM-enable that WebSphere
server:

1.

Manage the WebSphere server as a separate component using the eG administrative interface. When
managing, make a note of the Nick name and Port number that you provide.

If multiple WebSphere server instances are operating on a single node, and you want to monitor each of
those instances, then you will have to manage each instance as a separate WebSphere server using the
eG administrative interface. When doing so, make a note of the Nick name and Port number using
which you managed each instance.

In the <EG_AGENT_INSTALL_DIR> \lib\btm directory (on Windows; on Unix, this will be
lopt/egurkhallib/btm) of the eG agent host, you will find the following files:

« eg_btm.jar
« btmLogging.props
« btmOther.props

« exclude.props

31

Installing and Configuring eG BTM

»

10.

Next, log into the WebSphere server that is being monitored.
Create a new directory named, say btm, in any location on that server.

Under this directory, create a sub-directory. Take care to name this directory in the following format:
<Managed_ Component_ NickName>_ <Managed_ Component_ Port>. For instance, if you have
managed the WebSphere server using the nick name Websphere1 and the port number 9080, the sub-
directory should be named as Websphere1_9080.

If you have managed multiple instances of the WebSphere server, then you will have to create multiple
sub-directories - one each for every instance. Each of these sub-directories should be named after the
Nick name and port number using which the corresponding instance has been managed in eG.

Once the new sub-directory is created, copy all the files from the btm directory of the remote agent to
the sub-directory on the Websphere server. Where multiple sub-directories have been created, you will
have to copy the files to each of those directories.

Next, edit the btmOther.props file. You will find the following lines in the file:

Below property is BTM Server Socket Port, through which eG Agent Communicates
Restart is required, if any changes in this property

Default port is "13931"

BTM Port=13931
#

By default, theBTM_Port parameter is set to 13931. If you want to enable eG BTM on a different port,
then specify the same here. In this case, when configuring the Java Business Transactions test or the
Key Java Business Transactions test for the WebSphere server, make sure you configure the BTM
PORT parameter of the test with this port number.

Note:
When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default setting. In
this case therefore, the eG BTM will treat the host from which the very first 'measure request' comes in
as the Designated_Agent.

Below property is used to specify IP address of eG Agent which collectes BTM Data.

Default is None

32

Installing and Configuring eG BTM

#
Designated Agent=

#

Note:

In case a specific Designated_Agent is not provided, and the eG BTM treats the host from which the
very first 'measure request' comes in as the Designated_Agent, then if such a Designated_Agent is
stopped or uninstalled for any reason, the eG BTM will wait for a maximum of 10 measure periods for
that 'deemed' Designated_Agent to request for metrics. If no requests come in for 10 consecutive
measure periods, then the eG BTM will begin responding to 'measure requests' coming in from any other

eG agent.

11. Finally, save the btmOther.props file.

12. Then, proceed to configure the WebSphere server with the path to the eg_btm.jar and .props files. To
achieve this, follow steps 8 - 13 detailed in Section 1.0.1.1 above. This will lead you to the Generic

JVM Arguments text box of Figure 2.12.

Viewe | All tazks - |
verbose class loading
denme
4/ Guided Activtier ¥ Verbose garbage collection
o Servers
B verboze 10
= Serar Types
Initial MiE size
1024 2]
Masimum hesp size
[1024 e
& Applications
¥ Run WProf

4 Services

+ Resources HProf Argumants

] Secury

& Envirenment Debug Mode
) System adminizzration Debug arguments
| Jdwp=transport=ct_socket, servar=y,suspend=n,addrass=7777
H Users and Groups
arguments
& Monitoring and Tuning —javaagentiE:\btm\Webspharel_5080\eg_btm jar -

MOME: Ex \bsbrrs\ Weabe, D0
T _PROPS_MOME: €1 \bkm\ Webzphere1_5080

4 Senvice intagracien

% uoot _ .
Executable JAR fils nsme

Dizable JIT

Operating system nams

Apply | _OK || Resat || Cancel

Field help

For field halp infarmation,
salact a fiold labal or list
marker when the help curser
Is displayed.

Page help

Dpags

Command Assistance

command for last action

Figure 2.13: Configuring the JVM arguments

13. Here, specify the following:

-javaagent:<<PATH OF THE LOCAL FOLDER CONTAINING THE eg btm.jar FILE>>

-DEG_PROPS HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

For instance, if the jar file and .props files had been copied to the E:\btmWebsphere1_9080 directory,

the above specification will be:

33

Installing and Configuring eG BTM

14.

-javaagent:E:\btm\Webspherel 9080\eg btm.jar
—-DEG_PROPS_ HOME=E:\btm\Webspherel 9080

Finally, save the changes and restart the WebSphere server.

If an IBM WebSphere server is running on Unix, and the eG agent monitoring the server has been deployed on
aremote host in the environment, then follow the steps below to BTM-enable that WebSphere server:

1.
2.

3.

Follow the steps 1-12 above.

In the Generic JVM Arguments text box mentioned in step 12, specify the following:

-javaagent :<<PATH TO THE eg btm.jar FILE>>

-DEG PROPS HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

For instance, if the jar and .props files had been copied to the /opt/btm/WebSphere1_9080 directory,
the above specification will be:

-javaagent:/opt/btm/WebSpherel 9080/eg btm.jar
-DEG_PROPS HOME=/opt/btm/WebSpherel 9080

Save the changes and restart the WebSphere server.

2.4 Installing eG BTM on an Oracle WebLogic Server

The steps for BTM-enabling an Oracle WebLogic server will differ based on where the eG agent monitoring
that server has been deployed - whether on the WebLogic server, or on a remote host.

2.4.1 Agent-based Approach to BTM-Enabling Oracle WebLogic Server

If an Oracle WebLogic server is running on Windows, and the eG agent monitoring the server has been
deployed on that server itself, then follow the steps below to BTM-enable that WebLogic server:

1.

3.

Manage the WebLogic server using the eG administrative interface. When managing, make a note of the
Nick name and Port number that you provide.

If multiple WebLogic server instances are operating on a single host, and you want to BTM-enable all the
instances, then you will have to manage each instance as a separate WebLogic server using the eG
administrative interface. When doing so, make a note of the Nick name and Port number using which
you managed each instance.

Inthe <EG_AGENT_INSTALL_DIR>\lib\btm directory, you will find the following files:

- eg_btm.jar

« btmLogging.props

34

Installing and Configuring eG BTM

« btmOther.props
« exclude.props

4. Next, create a new directory under the <EG_AGENT_INSTALL_DIR>\lib\btm. Take care to name this
directory in the following format: <Managed_Component_NickName>_<Managed Component_Port>.
For instance, if you have managed the WebLogic server using the nick name WebLogic1 and the port
number 9080, the new directory under the btm directory should be named as WebLogic1_9080.

5. If you have managed multiple WebLogic server instances running on a single host, then you will have to
create multiple sub-directories under the btm directory- one each for every instance. Each of these sub-
directories should be named after the Nick name and Port number using which the corresponding
instance has been managed in eG.

6. Once the new directory is created, copy the following files from the btm directory to the new directory. If
multiple directories have been created as described in step 5 above, then the following files should be
copied to all directories:

« btmLogging.props
« btmOther.props
« exclude.props

7. Next, edit the btmOther.props file. You will find the following lines in the file:

Below property is BTM Server Socket Port, through which eG Agent Communicates
Restart is required, if any changes in this property

Default port is "13931"

BTM Port=13931
#

By default, the BTMPort parameter is set to 13931. If you want to enable eG BTM on a different port,
then specify the same here. In this case, when configuring the Java Business Transactions test or the
Key Java Business Transactions test for the WebLogic server, make sure you configure the BTM port
parameter of the test with this port number.

Note:
When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default setting. In
this case therefore, the eG BTM will treat the host from which the very first 'measure request' comes in
as the Designated_Agent.

35

Installing and Configuring eG BTM

Below property is used to specify IP address of eG Agent which collectes BTM Data.

Default is None

Designated Agent=

#

Note:

In case a specific Designated_Agent is not provided, and the eG BTM treats the host from which the
very first 'measure request' comes in as the Designated_Agent, then if such a Designated_Agent is
stopped or uninstalled for any reason, the eG BTM will wait for a maximum of 10 measure periods for
that 'deemed' Designated_Agent to request for metrics. If no requests come in for 10 consecutive
measure periods, then the eG BTM will begin responding to 'measure requests' coming in from any other
eG agent.

8. Then, you need to configure the WebLogic server with the path to the eg_btm.jar and .props files. To
achieve this, you can use one of the following two ways:

« If youwant to BTM-enable a single WebLogic server instance, then use the WebLogic Administration
console for this purpose.

« If you want to BTM-enable the Admin server of a WebLogic cluster, then use the start-up script of the
Admin server for this purpose

9. To use the WebLogic Administration console, first login to the console. Then, follow the steps detailed
below:

« When Figure 2.14 appears, click on the Servers link in the right panel.

36

Installing and Configuring eG BTM

ORACLE webLogic Server Administration Console 12¢

Change Center @ Home Log Out Preferences [2] Record Help Q Wekcome, weblogic | Connected to: base_domain_JAVAT
view changes and restarts Home >Summany of Environment sSummarny of Serers sadminSeres >Summary of Emvironment
Configuration editing is enabled. Future Suinimary of Environment

changes will automatically be activated as you
miadify, add or delete items in this domain.

WieblLogic Server can host your applications on multiple server instances, each of which can run on a different computer and specify its ewn network address. You can also group servers into clusters to ensure that

P ——— your applications are always available even if one server instance fails.
base_domain_JAVAT Use this section of the Administration Console to create, configure, and control servers and dusters.
Environment
|-~ Dapleyments Section | Description
'?' Services Servers A server is an instance of Weblogic Server that runs in its own Java Virtual Machine (VM) and has its own configuration.
|E| ?;:"r::;?:b'::: Clsters | lsteris » deployment n which multiple WebLagic Server instances (servers) run multansously and work togethes to provide increased scalability and reliability. & cluster appears to dients to
i Diagnostics @ a single WebLogic Server instance. The servers that constitute a duster can run on the same machine, or be located on different machines,

virtual Hosts A virtual host is a set of host names to which Weblogic Server instances (servers) or dusters respond. When you use virtual hosting, you use DNS to specify one or more hest names that map to the
1P address of a server or cluster. You alsa specify which Web applications are served by each virtual host.

.';:‘r'lf‘:"" A Migratable Target is a target that is active on ot most one server of & dluster at ime.
Coherence |, r, tand-al i dedicated JVM inst blef t d hed dat
foneel “sherence server is a stand-alone cache server, a dedicated JWM instance responsible for maintaining and managing cached data,

Coherence | P Coherence cluster is a group of Coherence nodes that share a group address which allows them to communicate. Coherence nodes can be applications, modules, or application servers (WebLogic

- Clusters Serwer instances or stand-alone cache servers). Coherence dusters enable applications to share data management and caching servces among server instances and clusters hosting the applications

How do I = that need access to them.

s Crests Managed Servers & machine is the logical representation of the compuler that hasts ane of more Weblogic Server instantes (servers). WeblLogic Server uses configured machine names to determine the aptimum
Machines server in a duster to which certain tasks, such as HTTP session replication, are delegated. The Admanistratien Server uses the machine definition in conjunction with the Node Manager application to

» Start and stop servers start remote servers.

» Create o dustes Work & Work Manager defines a set of request dlasses and thread constraints that manage work performed by Weblogic Servers. 13EE Applications, Web Application Modules, E18s, and RMI applications

« Configure default network connections Managers «can specify a named work manager to use for managing their work requests.

* Configure startup classes g:::::w‘:'d Startup and shutdown dasses are Java programs that you create to provide custom, system-wide senvices for your applications. You add the dasses to the WeblLogic Server dass path and then
Classes configure them to load and run when a server starts or shuts down.

System Status a8

il ol O - S

Figure 2.14: Clicking on the Servers link
« Figure 2.15 will then appear.

ORACLE Weskosic Sever oo corso 26

Change Conter R Home Log Out Preferences (] Record Help Q th-g,—hilﬁ-nwdgd to: base_domain_JAVA7]
view ehanges and restarts Home >Surmmary of Envircnment >Summary of Servers >adminServer >Summary of Environmant > Summary of Servers

Configuration editi

is enabled. Future Summary of Servers

changes will automatically be activated as you

modify, add or delete items in this domain. Configuration Coatrol

Demain Structure

base_domain_JAVAT A senver Is an instance of WebLogic Server that runs i its own Java Virtual Machine (JVM) and has its own configuration.

B Emdronment This page sumemarizes sach server that has been configured in the currert Weblogic Server domain,
Deploments.

B-services

ecurity Realms &

B Interaperability
B Diagnestics ¥ Customize this table
Servers (Filtered - More Columns Exist)
Hew | [Clone Delele Showing 1to 1of 1 Previous | Next
| | Hame & Chuster Hachine State Health Listen Port
RUNKING o ox 7001
How do L. a

Hew| [Clone Delele Showing 1to 1of 1 Previous | Nest
« Create Managed Servers.

= _Clong Server:

Figure 2.15: Clicking on the server instance to be BTM-enabled

« Figure 2.16 will then appear.

37

Installing and Configuring eG BTM

ORACLE webLogic Server Administration Consols 12¢

Change Center 1 Home LogOut Preferences (5] Record Help Q

view changes and restarts Homa >Surmary of Environmant, >Summary of Sarvers >AdminSerues >Surmary of Environmant, >Summary of Sarvers

Settings for AdminServer

Configuration editing is enabled. Future
changes will automatically be activated as you
modify, add or delete items in this domain.

Configuration | Protocols | Logging | Debug | Monitoring | Control | Deployments | Services | Security | Motes

General | Cluster | Sendces | Keystores | SSL | Federation Serviees | Deployment | Migration

Save

Use this page to configure general festures of this server such as default network communications

View INDI Tree &

Hame: Adminserver
Machine: (Hane)
Cluster: (standalone)
4] Listen Address:
Listen Port Enabled

+ Start and stop servers

+ Canfigure WLDF diagnostic volume Listen Port: 7001

b 551 Listen Port Enablled

Heslth of Running Servers

[7002

]

L — {5, Chent Cert Prosy Enabled

AdminServer

Tuming | Overlsad | Health Menitaring

Welcome, weblogic | Conascted to: base_domain_JAVAT

Serverstart | Web Serviess

An alphanumeric name for this server instance. More Infa...

Th ¢ Server hast computer (machine) on which this server is meant to

he WebLog
un. More Info..

he cluster, or group of WebLogic Server instances, to which this server
belongs, Mere Info..

55 or DNS name this server uses to listen for Incoming
Mare Info.

hether this server can be reached through the default plain-text (non-
sten port. More Info...
The default TCP port that this server uses to listen for regular (nor-S5L) incoming
connections. More Info

Indicates whether the server can
port. More Info,

be reached through the default SSLlisten

More
Info...

Specifies whether the HitpClustersenst proxses the diest certificate in a specia

Figure 2.16: Viewing the configuration of the chosen server instance

« Keep scrolling down the right panel of Figure 2.16 until the Arguments text box comes into view (see

Figure 2.17).

Java Home:

Java Vendor:

BEA Home:

Root Directory:

Class Path:

System Status

Health of Running Servers

urkha\1ib\btaleg_bta.jar -
+\eGurkha\1ib\bta\weblogic1_7001

Confirm Password:

er. More Info,

The user name to use when

TH he usemame us
manitoring. More Info.

Figure 2.17: Configuring the JVM arguments

« Inthe Arguments text box, specify the following lines:

-javaagent :<EG_AGENT INSTALL DIR>\1lib\btm\eg btm.jar

-DEG_PROPS HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

For instance, if the .props files had been copied

to

the <EG_ AGENT_ INSTALL_

DIR>\lib\btm\weblogic1_7001 directory, the above specification will be:

-javaagent :<EG_AGENT_INSTALL DIR>\lib\btm\eg btm.jar

-DEG_PROPS_HOME=<EG_AGENT INSTALL DIR>\lib\btm\weblogic 7001

38

Installing and Configuring eG BTM

« Finally, save the changes and restart the WebLogic server.

10. To edit the start-up script of the Admin server of the WebLogic cluster, then follow the steps below:

« Login to the Admin server, open the start-up script, and insert the following lines init:

set EG_JAVA OPTIONS ADMIN SERVER="-javaagent:<EG AGENT INSTALL DIR>\1lib\btm\eg
btm.jar -DEG PROPS HOME=<<PATH TO THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>"

if "%SERVER NAME%"=="AdminServer" (
set EG_JAVA_OPTIONS=%EG_JAVA_OPTIONS_ADMIN_SERVER%
)

set JAVA OPTIONS=%JAVA OPTIONS% %$JAVA PROPERTIESS -
Dwlw.iterativeDev=%iterativeDevFlag% -Dwlw.testConsole=%testConsoleFlag% -

Dwlw.logErrorsToConsole=%logErrorsToConsoleFlags $EG JAVA OPTIONS%

For instance, if the .props files had been copied to the C:\eGurkhallib\btm\WebLogic_7001
directory, the above specification will be:

set EG_JAVA OPTIONS ADMIN SERVER="-javaagent:c:\eGurkha\lib\btm\eg btm.jar -DEG
PROPS_HOME=c:\eGurkha\lib\btm\WebLogic_ 7001"

if "$SERVER NAMES$"=="AdminServer" (
set EG_JAVA OPTIONS=%EG JAVA OPTIONS ADMIN SERVER$
)

set JAVA OPTIONS=%JAVA OPTIONS% %JAVA PROPERTIESS -
Dwlw.iterativeDev=%iterativeDevFlag% -Dwlw.testConsole=%testConsoleFlag% -

Dwlw.logErrorsToConsole=%logErrorsToConsoleFlags %EG JAVA OPTIONS%

39

Installing and Configuring eG BTM

astT POST_CLASSPATH-RAROTAS\XqQrl.jar

@REM FROFILING SUPBOAT
set JAVA_FROFILE=

get SERVER_CLASS=webloglc.Server

set JAVA_PROPERTIES=%JAVA_FROFERTIES% WLF_JAVA_ FROFERTIES%

f “3SERVEE HAMER™=="ROMIDServer® |
sar EE JIVA OPTIONS=EG JAVA OFTIONS ADMIN SERVERY

set JAVA OPTIONS=%JAVRA OPTIOHS® VJAVA FROPERTIESY -Dwlw.iterativeDev=iiterativeDevFlagh -Dwlw.teatConsole=icestConscleFlagh
Dwlw.logErrorsIoConaole=tlogErroraloConacleFla

if “SPRODUCTION MODEA"=="true" (
aer JAVA OFTIONS= -Dweblogic.FroducticnModeEnabled=true tJAVA OPTIONSR
)

@REM == Setup properties o that we can save stdout and stderr to files

if HOT "%WLS_STDOUT_LOGE"=="" |

echo Logging WLS stdout to %WLS STDOUT_LOGE

set JAVA_OFTIONS=-4JAVA_OFTIONS% -Dweblogic.Stdout-¥WLS_STDOUT_LOGH
)

if WOT “4WLS_STDERR_LOGR"=="" |
echo Logging WLS scderr to ®WLS_STDERR LOGH
aer JAVA_OPFTIONS=%JAVR_OFTIONSY -Dweblogic.Stderr=¥WLS_STDERR_LOGR

Figure 2.18: Editing the start-up script of the WebLogic Admin server on Windows that is monitored in an
agent-based manner

« Finally, save the file and restart the Admin server.

If an Oracle WebLogic server is running on Unix, and the eG agent monitoring the server has been deployed
on that server itself, then follow the steps below to BTM-enable that WebSphere server:

1.

If you want to BTM-enable a single WebLogic server instance, then first, follow the steps 1-9 above,
until the Arguments text box comes into view. When doing so, note that the eg_btm.jar and the .props
files will be available in the /opt/egurkhallib/btm directory on the Unix host.

In the Arguments text box mentioned in step 9 (see Figure 2.17), specify the following:

-javaagent:<<PATH TO THE eg btm.jar FILE>>

—-DEG_PROPS HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

Forinstance, if the .props files had been copied to the /opt/egurkhallib/btm/WebLogic_7001 directory,
the above specification will be:

-javaagent:/opt/egurkha/lib/btm/eg btm.jar

-DEG_PROPS HOME=/opt/egurkha/lib/btm/WebLogic 7001

In Unix environments, if the eG agent is deployed on the same host as the WeblLogic server, then both
the agent and the server will be running using different user privileges. In this situation, by default, the

40

Installing and Configuring eG BTM

eG BTM logs will not be created. In order to create the same, insert the following entry after the -DEG_
PROPS_HOME specification .

-DEG LOG HOME=<LogFile Path>

Before providing this specification, make sure you create a folder for BTM logs - say, eGBTMLogs - in
any directory to which the target application server has access. Then, against, -DEG_LOG_HOME,
provide the full path to the eGBTMLogs directory. Where multiple instances on the same server are to
be BTM-enabled, you can use the same directory for writing log files of all instances.

For example, to create log files in the /App001/eGBTMLogs directory, the complete specification will
be as follows:

-DEG_PROPS HOME=/opt/egurkha/lib/btm/WebLogic 7001
-javaagent:/opt/egurkha/lib/btm/eg btm.jar
-DEG_LOG_HOME=/App001/eGBTMLogs

4. Save the changes and then restart the WebLogic server instance.

5. On the other hand, if you want to BTM-enable an Admin server (of a WeblLogic cluster) on Unix, then
follow steps 1-7 above. Then, jump to step 10. As instructed by step 10, edit the start-up script of the
Admin server, and insert the following lines in it:

EG_JAVA OPTIONS_ ADMIN SERVER="-javaagent:/opt/egurkha/lib/btm/eg btm.jar -DEG_PROPS_
HOME=<<PATH TO THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>"

if ["${SERVER NAME}" = "AdminServer"] ; then
EG_JAVA_OPTIONS=" S {EG_JAVA_OPTIONS_ADMIN_SERVER} "
fi

SAVE_JAVA OPTIONS="${JAVA OPTIONS} ${EG_JAVA OPTIONS}"

For instance, if the .props files have been copied to the /opt/egurkhallib/btm/WebLogic_7001
directory on the Unix host, then your specification will be:

EG_JAVA OPTIONS ADMIN SERVER="-javaagent:/opt/egurkha/lib/btm/eg btm.jar -DEG_PROPS
HOME=/opt/egurkha/lib/btm/WebLogic 7001"

if ["${SERVER NAME}" = "AdminServer"] ; then
EG_JAVA OPTIONS="${EG JAVA OPTIONS ADMIN SERVER}"

fi

SAVE JAVA OPTIONS=" S{ JAVA OPTIONS } S {EG_JAVA_OPTIONS I

6. Here again, to create the log files, insert the following entry after the -DEG_PROPS_HOME
specification and before the closing quotes.

a1

Installing and Configuring eG BTM

-DEG_LOG_HOME=<LogFile Path>

Before providing this specification, make sure you create a folder for BTM logs - say, eGBTMLogs - in
any directory to which the target application server has access. Then, against, -DEG_LOG_HOME,
provide the full path to the eGBTMLogs directory. Where multiple instances on the same server are to
be BTM-enabled, you can use the same directory for writing log files of all instances.

For example, to create log files in the /App001/eGBTMLogs directory, the complete specification will
be as follows:

EG_JAVA OPTIONS ADMIN SERVER="-javaagent:/opt/egurkha/lib/btm/eg btm.jar -DEG_PROPS_
HOME=/opt/egurkha/lib/btm/WebLogic 7001 -DEG LOG_HOME=/App001/eGBTMLogs"

if ["${SERVER NAME}" = "AdminServer"] ; then
EG_JAVA_OPTIONS=" S {EG_JAVA_OPTIONS_ADMIN_SERVER} "
fi

SAVE JAVA OPTIONS="S${JAVA OPTIONS} ${EG_JAVA OPTIONS}"

7. Finally, save the file and restart the WebLogic Admin server.

2.4.2 Agentless Approach to BTM-Enabling an Oracle WebLogic server

If an Oracle WebLogic server is running on Windows, and the eG agent monitoring the server has been
deployed on a remote host in the environment, then follow the steps below to BTM-enable that WebLogic
server:

1.

Manage the WeblLogic server as a separate component using the eG administrative interface. When
managing, make a note of the Nick name and Port number that you provide.

If multiple WebLogic server instances are operating on a single node, and you want to monitor each of
those instances, then you will have to manage each instance as a separate WeblLogic server using the
eG administrative interface. When doing so, make a note of the Nick name and Port number using
which you managed each instance.

In the <EG_AGENT_INSTALL_DIR> \lib\btm directory (on Windows; on Unix, this will be
/opt/egurkhallib/btm) of the eG agent host, you will find the following files:

- eg_btm.jar

« btmLogging.props

« btmOther.props

« exclude.props

Next, log into the WebLogic server that is being monitored.

Create a new directory named, say btm, in any location on that server.

42

Installing and Configuring eG BTM

10.

Under this directory, create a sub-directory. Take care to name this directory in the following format:
<Managed _Component_ NickName>_<Managed Component_Port>. For instance, if you have
managed the WebLogic server using the nick name weblogic1 and the port number 70071, the sub-
directory should be named as weblogic_7001.

If you have managed multiple instances of the WebLogic server, then you will have to create multiple
sub-directories - one each for every instance. Each of these sub-directories should be named after the
Nick name and port number using which the corresponding instance has been managed in eG.

Once the new sub-directory is created, copy all the files from the btm directory of the remote agent to
the sub-directory on the WebLogic server. Where multiple sub-directories have been created, you will
have to copy the files to each of those directories.

Next, edit the btmOther.props file. You will find the following lines in the file:

Below property is BTM Server Socket Port, through which eG Agent Communicates
Restart is required, if any changes in this property

Default port is "13931"

BTM Port=13931
#

By default, theBTM_Port parameter is set to 13931. If you want to enable eG BTM on a different port,
then specify the same here. In this case, when configuring the Java Business Transactions test or the
Key Java Business Transactions test for the WebLogic server, make sure you configure the BTM
PORT parameter of the test with this port number.

Note:
When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default setting. In
this case therefore, the eG BTM will treat the host from which the very first 'measure request' comes in
as the Designated_Agent.

Below property is used to specify IP address of eG Agent which collectes BTM Data.

Default is None

Designated Agent=

43

Installing and Configuring eG BTM

11.
12.

13.

Note:

In case a specific Designated_Agent is not provided, and the eG BTM treats the host from which the
very first 'measure request' comes in as the Designated_Agent, then if such a Designated_Agent is
stopped or uninstalled for any reason, the eG BTM will wait for a maximum of 10 measure periods for
that 'deemed' Designated_Agent to request for metrics. If no requests come in for 10 consecutive
measure periods, then the eG BTM will begin responding to 'measure requests' coming in from any other
eG agent.

Finally, save the btmOther.props file.

Then, proceed to configure the WebLogic server with the path to the eg_btm.jar and .props files. To
achieve this, you can use one of the following two ways:

« If youwant to BTM-enable a single WebLogic server instance, then use the WebLogic Administration
console for this purpose.

« If you want to BTM-enable the Admin server of a WebLogic cluster, then use the start-up script of the
Admin server for this purpose

To use the WeblLogic Administration console, first login to the console. Then, follow the steps detailed in
step 9 of the previous section, until you get to the step where the Arguments text box comes into view.
Here, provide the entry depicted by Figure 2.19 below.

BEA Home:

Root Directory:

Class Path:

System Status
Health of Running Servers

I Failed (0]

2
g

o
3
al

Security Policy File:

User Name: e User name ta use when booting this server. More Info

Password: The passward of the usermame used to boot the server and perform server health
enitoring. More Info.

Confirm Password:

Figure 2.19: Configuring the JVM arguments
Here, specify the following:
-javaagent :<<PATH OF THE LOCAL FOLDER CONTAINING THE eg btm.jar FILE>>

-DEG PROPS HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

Installing and Configuring eG BTM

14.
15.

For instance, if the jar file and .props files had been copied to the E:\btm\weblogic_7001 directory, the
above specification will be:
-javaagent:E:\btm\weblogic 7001\eg btm.jar

—-DEG_PROPS_HOME=E:\btm\weblogic_ 7001
Finally, save the changes and restart the WebLogic server.

To BTM-enable the Admin server of a WebLogic cluster, edit the start-up script of the Admin server. For
that, follow the steps below:

« Open the start-up script and insert the following lines in it:

set EG JAVA OPTIONS ADMIN SERVER="-javaagent:<<PATH TO THE eg btm.jar FILE>> -DEG
PROPS HOME=<<PATH TO THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>"

if "$SERVER NAMES$"=="AdminServer" (
set EG_JAVA OPTIONS=%EG JAVA OPTIONS ADMIN SERVER$

)

set JAVA OPTIONS=%JAVA OPTIONS% %$JAVA PROPERTIESS -
Dwlw.iterativeDev=%iterativeDevFlag% -Dwlw.testConsole=%testConsoleFlag% -

Dwlw.logErrorsToConsole=%logErrorsToConsoleFlags %EG JAVA OPTIONS%

For instance, if the jar file and the .props file had been copied to the C:\btm\WebLogic_7001
directory, the above specification will be:

set EG_JAVA OPTIONS ADMIN SERVER="-javaagent:c:\btm\WebLogic 7001\eg btm.jar -DEG
PROPS HOME=c:\btm\WebLogic 7001"

if "$SERVER NAMES$"=="AdminServer" (
set EG JAVA OPTIONS=%EG JAVA OPTIONS ADMIN SERVERS

)

set JAVA OPTIONS=%JAVA OPTIONS% %$JAVA PROPERTIESS -
Dwlw.iterativeDev=%iterativeDevFlag% -Dwlw.testConsole=%testConsoleFlag% -

Dwlw.logErrorsToConsole=%logErrorsToConsoleFlags %EG JAVA OPTIONS%

45

Installing and Configuring eG BTM

) else |
aet POST_CLASSPATH=ARRDIRG\xgrl.jar
.]
EREM FROFILING SUPPORT
get JAVA_FROFILE=
aet SERVER_CLASS=weblogic.Server

set JAVA_PROPERTIES=%JAVA_PFROPERTIES® ¥WLF_JAVA FROPERIIES:

T EG JAVA OFTICHS ROMTH SERVER="-javaagent:-javaagent:s:\brm\WebLogic T001\eg btm.jar -DEG PROPS BOME=c:‘\bhtm\WebLogic T001"

if "4SERVER_MAMEA“=="RdminServer” (
get EG JAVA OPTIONS=-REG JAVA OFTIONS ADMIN SERVERR

~Dwlw. itararivelev=titarativaDsv % —Dwlw.tesEConsslé=trestCansaleFlagt

et JAVA_OPTION3=%JAVA_CPTICHS: tJAVA_PROFERTIES:

if "3FRCODCTIION MODER"=="wrus” |
set JAVA_OFTIONS= -Dweblogic.ProductionModeEnabled=true YJAVA_OFTIONSY

)
fREM —— Serup propercies so thAT We CAR SaVE Stdout and srderr te files

if HOT “WWL5S_STDOUT_LOGR"=="" [

echo Logglng WLS stdout to RWLS_STDOUT_LOGY

ger JAVA_OFTIONS=%JAVA_OPTICHSY -Dweblogie.Jrdout=3¥WLS_STDOUT_LOGE
)
if HOT “%WLS_STDERR LOGR"=="" [

echs Logging WLS stderr te ¥WLS_STDERR_LOGH
set JAVA_OPTIONS=%JAVA_CPTIONSY -Dweblogic.3tderr=4WLS_STDERR_LOGH

Figure 2.20: Editing the start-up script of the WebLogic Admin server on Windows that is monitored in an
agentless manner

« Finally, save the file and restart the Admin server.

If an Oracle WebLogic server is running on Unix, and the eG agent monitoring the server has been deployed
on a remote host, then follow the steps below to BTM-enable that WebLogic server:

1.

To BTM-enable an individual WebLogic server instance, follow the steps 1-13 above, until the
Arguments text box comes into view.

In the Arguments text box mentioned in step 13, specify the following:

-javaagent:<<PATH TO THE eg btm.jar FILE>>

-DEG PROPS HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

For instance, if the jar file and the .props files had been copied to the /opt/btm/WebLogic_7001
directory, the above specification will be:

-javaagent:/opt/btm/eg btm.jar
-DEG_PROPS_HOME=/opt/btm/WebLogic 7001
Save the changes and then restart the WebLogic server instance.

On the other hand, if you want to BTM-enable an Admin server (of a WebLogic cluster) on Unix, then
follow steps 1-12 above. Then, jump to step 15. As instructed by step 15, edit the start-up script of the
Admin server, and insert the following lines in it:

46

Installing and Configuring eG BTM

5.

EG_JAVA OPTIONS ADMIN SERVER="-javaagent:<<PATH TO THE eg btm.jar FILE>> -DEG_PROPS
HOME=<<PATH TO THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>"

if ["S${SERVER NAME}" = "AdminServer"] ; then
EG _JAVA OPTIONS="${EG JAVA OPTIONS ADMIN SERVER}"
fi

SAVE JAVA OPTIONS="S${JAVA OPTIONS} ${EG JAVA OPTIONS}"

For instance, if the jar file and .props files have been copied to the /opt//btm/WebLogic_7001 directory
on the Unix host, then your specification will be:

EG_JAVA OPTIONS ADMIN SERVER="- javaagent:/opt/btm/WebLogic 7001/eg btm.jar - DEG_
PROPS_HOME=/opt/btm/WebLogic 7001"

if ["S${SERVER NAME}" = "AdminServer"] ; then

EG _JAVA OPTIONS="${EG JAVA OPTIONS ADMIN SERVER}"

fi

SAVE JAVA OPTIONS="S${JAVA OPTIONS} ${EG JAVA OPTIONS}"

Finally, save the file and restart the WebLogic Admin server.

2.5 Installing eG BTM on GlassFish

The steps for BTM-enabling GlassFish server will differ based on where the eG agent monitoring that server
has been deployed - whether on the GlassFish server, or on a remote host.

2.5.1 Agent-based Approach to BTM-Enabling a GlassFish Server

If a GlassFish server is running on Windows, and the eG agent monitoring the server has been deployed on
that server itself, then follow the steps below to BTM-enable that GlassFish server:

1.

3.

Manage the GlassFish server using the eG administrative interface. When managing, make a note of the
Nick name and Port number that you provide.

If multiple GlassFish server instances are operating on a single host, and you want to BTM-enable all the
instances, then you will have to manage each instance as a separate GlassFish server using the eG
administrative interface. When doing so, make a note of the Nick name and Port number using which
you managed each instance.

Inthe <EG_AGENT_INSTALL_DIR>\lib\btm directory, you will find the following files:

. eg_btm.jar

« btmLogging.props

47

Installing and Configuring eG BTM

« btmOther.props
« exclude.props

4. Next, create a new directory under the <EG_AGENT_INSTALL_DIR>\lib\btm. Take care to name this
directory in the following format: <Managed_Component_NickName>_<Managed Component_Port>.
For instance, if you have managed the GlassFish server using the nick name GlassFish1 and the port
number 8080, the new directory under the btm directory should be named as GlassFish1_8080.

5. If you have managed multiple GlassFish server instances running on a single host, then you will have to
create multiple sub-directories under the btm directory- one each for every instance. Each of these sub-
directories should be named after the Nick name and Port number using which the corresponding
instance has been managed in eG.

6. Once the new directory is created, copy the following files from the btm directory to the new directory. If
multiple directories have been created as described in step 5 above, then the following files should be
copied to all directories:

« btmLogging.props
« btmOther.props
« exclude.props

7. Next, edit the btmOther.props file. You will find the following lines in the file:

Below property is BTM Server Socket Port, through which eG Agent Communicates
Restart is required, if any changes in this property

Default port is "13931"

BTM Port=13931
#

By default, theBTMPort parameter is set to 13931. If you want to enable eG BTM on a different port,
then specify the same here. In this case, when configuring the Java Business Transactions test or the
Key Java Business Transactions test for the GlassFish server, make sure you configure the BTM port
parameter of the test with this port number.

Note:
When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default setting. In
this case therefore, the eG BTM will treat the host from which the very first 'measure request' comes in
as the Designated_Agent.

48

Installing and Configuring eG BTM

Below property is used to specify IP address of eG Agent which collectes BTM Data.

Default is None

Designated Agent=

#

Note:

In case a specific Designated_Agent is not provided, and the eG BTM treats the host from which the
very first 'measure request' comes in as the Designated_Agent, then if such a Designated_Agent is
stopped or uninstalled for any reason, the eG BTM will wait for a maximum of 10 measure periods for
that 'deemed' Designated_Agent to request for metrics. If no requests come in for 10 consecutive
measure periods, then the eG BTM will begin responding to 'measure requests' coming in from any other
eG agent.

8. Then, you need to configure the GlassFish server with the path to the eg_btm.jar and .props files. To
achieve this, you can use one of the following two ways:

« Through the GlassFish Administration console
« By editing the start-up script of the GlassFish serverinstance

9. If you choose to use the GlassFish Administration console, then first, login to the console. Then, follow
the steps detailed below:

« When Figure 2.21 appears, click on the server-config node in the tree-structure in the left panel.

49

Installing and Configuring eG BTM

Home About
User: admin Domain: domain

Server: 192 168 8.251

GlassFish™ Server Open Source Edition

* [JOBC
= g JMS Resources
* [JNDI

Javalail Sessions

4 Resource Adapter Configs
* i Configurations
* gy defaull-config

| e

@, 4dmin Service
& Connector Service
& Es8 Container
@ HTTP Service

& JVM Settings

B Java Message Service

& Admin Service % Logger Settings
5 C tor Servi
i3 onnector -En'IEE !Mnniioring
(& EJB Container
» ﬁ HTTP Service Q Network Listeners
& JVM Sattings & Protocols
> gt Java Messa_ge Service Q Transports
& Logger Settings
Menitoring 2 ore
9
» @ Network Config Q Security
> & ORB A System Properties
L Security
5 System Properties & Thread Pools
3 Thread Pools # Transaction Senvice
=

d¢ Transaction Service
* @ Vinual Servers
% Web Container

& Virtual Servers

2 Web Container

Figure 2.21: Clicking on the server-config node

« From the options listed in the right panel of Figure 2.21, select the JVM Settings option. Figure 2.22 will
then appear. Select the JVM Options tab page in Figure 2.22.

Home™ "About
User: admin Domain: domain1 Server: 192 168.8 251

GlassFish™ Server Open Source Edition

" @ I08C General | Path Sett IVM Options | Profile
ings "
» g4 IS Resources -
» (o INDI .
HJ il s JVM General Settings
vaMall Session:
i Jvallal Sesshms Change the general cenfiguration settings for the Java Virtual Machina (JUM) Soma of these settings centrol interactions with a Java Platferm Debugger Architscture (JPDA) debugger
5 Resource Adapter Configs Load
¥ [Configurations * jndicates required figld

* [g§ default-config

* [gy server-config
5 Admin Service
&y Connector Service Java Home: * ${com sun aas javaRoot)
I EJB Container Path to the directory in which the Java Development Kit is installed

Configuration Name: server-canfig

> HTTP Service Javac Options: F
Command line aptions to pass to the javac compiler

» gt Java Message Service Debug: Enabled

i Logger Settings Stan server In debug mode ready for JPDA-based debugges
Monitorin Debug Options: -agentlib jdwp=transport=dt_socket server= d=n addres|

] g gentlib | sport=_ ¥ suspen

» @, Network Config JPDA options passed to JVM when debugging is enabled

» 2 ORB RMI Compile Options: [Jiop -poa -alwaysgenerate -keepgenerated -

» g Securty -keepgenerated saves generaled source for stubs and ties
/3 System Properties Bytecode Preprocessor:

* o Thread Pools

o Transaction Service
* @ Vinual Servers

{8 Web Cantainer

Figure 2.22: Clicking on the JVM Options tab page

o Figure 2.23 will then appear. You now need to add two new JVM options. For this, click on the Add
JVM Option button in Figure 2.23, twice.

50

Installing and Configuring eG BTM

Home About
User: admin Domain: domain1 Server: 192 168 8.251

GlassFish™ Server Open Source Edition

=

* g JoBC B | F— | Path Setii VM Opti Profiler
L 4 JMS Resources . ons 5
i e JVM Options [Save|

= JavaMail Sessions
3 Resource Adapter Configs
v i Configurations Configuration Name: server-config

Manage JVM options for the server. Values containing one or more spaces must be enclosed in double quotes ("val.

» g default-config

» gi| serverconfig
3 Admin Service |8 & | Delete

i Connector Service | Snlnd] Value "

& EJB Container
. HTTP Semvice -Djava awt headless=true

-Djava security policy=${com. sun.aas. instanceRoot}config/server policy

> gt Java Message Sevice Dfelix fileinstall disableC
% Logger Settings -Dosgl shell telnet maxconn=1
) Monitoring -Dfelix fileinstall. poll=5000
» @ Network Config -Djava endorsed dirs=3{com sun aas installRoathmodules/endarsed${path ser rj${com sun aaz installR
» & OR8 -Dosgi shell telnet port=6666
3 ﬂ Security -Dcom. cte wstx retumNullForDefaultNamespace=true
/3 System Properties =X+ UnlockDiagnosticVMOptions
» o Thread Pools -Dcom. sun. enterprise. config. config_environment_factory_dass=com sun prise.config. Appsen!
& Transaction Service -Djava ext. dirs=5{com sun aas javaRoot}/lib/ext${path. separator}${com. sun aas javaRoot}jre/lib/ext¥{path sepa
> @ Vinual Servers -Djavax xml accessExemalSchema=all
(S Web Container -Dgosh arge=—nainteractive
(s Update Tool - XX MaxPermSize= 192m

Figure 2.23: Clicking on the ADD JVM Option button

« Two empty rows will then be inserted, as depicted by Figure 2.24.

Home About,
User: admin Domain: domain1 Server: 1392168 8.251

GlassFish™ Server Open Source Edition

=

* [JDBC T
» g JMS Resources General | Path Settings JVM Options Profiler
JNDI -
" kd JVM Options | Save |

= JavaMail Sessions
& Resource Adapter Configs
v (B4 Configurations Configuration Name: server-config
* (B default-config

* g serverconfig
& Admin Service lg_gj &)1 Delete

i3 Connector Service
% E.JB Container

> a HTTF Service

» gt Java Message Semvice

Manage JUM oplions for the server Values containing one or more spaces must be enclosed in double quates ("value sting”)

|Selm_\fnlua |

-Dijava.awt headless=true
-Dijava. security policy=${com.sun.aas instanceRoot) conflg/server pollcy

ogger Sattings
&L Setti
[z Monitoring -Difalix fileinstall disableConfigSave=false
* @ Network Config -Diosgi. shell telnet maxconn=1
-2 oRB -Drfelix fileinstall poll=5000
> (@ Security -Djava.endorsed. dirs=5{com. sun_aas InstallRoot) modules/endorsed${path sep ri${com sun aas InstallRoot]
3 System Properties -Dosgi. shell telned port=6656
» g Thread Pools -Dicom. cte wstx retumMullF orDefault Mamespace=true
Transaction Service -}X:+UnlockDiagnosticVMOptions.
* gno Pt
» @ Vinual Servers -Dicom. sun enterprise. config config_environment_factory_class=com.sun enterprise config serverbeans Appseny
{8 Web Container -Djava.ext dirs=${com.sun. aas. JavaRoot}/lib/extS{path. separatorf${com.sun.aas javaRoot}jre/lib/ex${path sepa
@ Update Tool - -Diavax xml accessExemalSchema=all

Figure 2.24: Two empty rows inserted in the JVM Options tab page
« Specify each of the following lines in each of the empty rows, as indicated by Figure 2.25:
-javaagent :<EG_AGENT INSTALL DIR>\lib\btm\eg btm.jar

-DEG_PROPS HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

51

Installing and Configuring eG BTM

Forinstance, if the .props files had been copied to the <EG_AGENT_INSTALL_
DIR>\lib\btm\GlassFish1_8080 directory, the above specification will be:

-javaagent :<EG_AGENT INSTALL DIR>\lib\btm\eg btm.jar

-DEG_PROPS_HOME=<EG_AGENT INSTALL DIR>\lib\btm\GlassFishl 8080

Home _ About...

User: admin Domain: domaini Server: 192 168.8.251

GlassFish™ Server Open Source Edition
&

» g JOBC
* gt JMS Resources
=L

g JavaMail Seesions
a Resource Adapter Configs

v B Configurations
* B default-config
* [serverconfig

Fy Admin Service
& Connector Service
{s)) EJB Container
3 Q HTTP Service
<, JVM Settings
v gt Java Message Service
§@ Logger Settings
[Monitaring
» @ Network Config
- g ORB
L) Security
3 System Properties
» g Thread Pools
of¢ Transaction Service
[Q Virtual Servers
Web Container

ﬁ Update Tool

General Path Settings JVM Options. Profiler

JVM Options Save |
Manage JVM options for the server. Values containing one or more spaces must be enclosed in double quotes (“value strng")

Configuration Name: server-config

Options (37)
8% 8) Add JVM Option | U=let=

| Select | Value m
Jjavaagent C-\eGurkhallib\btm\GlassFish1_B080\eg_btm jar |
[-DEG_PROPS_HOME C:\eGurkhallib\btm\ GlassFish1_8031]
-Djava.awt.headless=true

-Djava. security policy=%{com. sun. aas instanceRoot) config/server policy
-Dfelix fileinstall disableCanfigSave=false

-Diosgl. shell teinet. maxconn=1
-Dfelinc fileinstall poll=5000

-Djava. endorsed. dirs=§{com.sun aas.
-Dosgi shell telnet port=6566
-Dcomcte wstxe returmMullForDefaultNamespace=trug
XX +UnlockDiagnosticMOptions

-Dcom. sun enterprise. config config_environment_factory_class=com.sun enterprise.config serverbeans. Appsen|

/s 1P P

-Djava. ext {com. sun.aas | {p: 5UMN. 335,] ‘ext${path sepa

-Djavax xml accessExtemalSchema=all

Figure 2.25: Specifying the Java arguments for BTM-enabling the GlassFish server
« Finally, save the changes and restart the GlassFish server.

10. On the other hand, if you want to BTM-enable the GlassFish server by editing the start-up script of the
GlassFish serverinstance, then follow the steps below:

« Open the start-up script and enter the following lines in it, as depicted by Figure 2.26.

<jvm-options>-javaagent:<EG AGENT INSTALL DIR>\lib\btm\eg btm.jar</jvm-options>

<jvm- options>-DEG ROPS HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE
FILES>></jvm-options>

.PROPS

For instance, if the .props files had been copied to the <EG_ AGENT_ INSTALL_
DIR>\lib\btm\GlassFish1_8080 directory, the above specification will be:
<jvm-options>-javaagent:<EG AGENT INSTALL DIR>\lib\btm\eg btm.jar</jvm-options>

<jvm-options>-DEG_PROPS HOME=<EG_ AGENT INSTALL DIR>\lib\btm\GlassFishl 8080</jvm-

options>

52

Installing and Configuring eG BTM

I e e I e e e - B e B e e e e e e et e e et St Tt

-"]au ext.dizs=§[com. sun. aas, jevaRoot) /1lib/excé [path. 2eparater] & [com. sun. aga. javaRoot) /jre/lib/excs (pach. separator] § [com. sun. sas. instancefoot)

Dlavax. :rnl a.,c:aantt*nalSchtn-!l-(.'_‘"' optiona>

2>=0gosh. arge=--noinceractives/ JVE-opTionas

2> :MaxPermSize=102me /| vm- LEL

=3-Djavax. menagesent buil isl=com, sun.enterprise, w3 adein,
2>-Djdk. corba.allowlutputst: mh:::Flua-,ruc{ m-optionay

2>-Dcom. sun. enterprize. security. hrtpaOutboundkeyAlias=alaa</
23-Dfelix.fileinatall .bundles. scarcTransienc=troed/ jVE-optiones

n=>-Dfelix.fileinstall.bundles.new. start=true</jva-optionsr

na>=Dfelix.fileinstall .dir=5{com.sun.aas.inatal 1n:ctj /modules/autostart/</Jvm-optionay

2>=Djava.security.auch.login. config=F {com.sun.aas. inectancefoot) feonfig/ login. conf</ jve-optione>

23— KM :NewRatin=2</

AppServerMBeandarverBuilderd/jim-optionss

na>»

=>—Dfelix.fileinstall.log =¥
n2>-Doagi.shell.telnet.ip=12 { ptiona>
23=Doryg.glassfish.additiona Bu.‘r'].eaLSta":-:::J apache.felix.shell, org.apache.felix.gogo.runtine,org.apache.felix.gogo.shell, org.apache.felix.
pgch felix.shell.remote, org.apache.felix.fileinscall</jva-cptions>
nay
asl t\-,su::e-s[cc:n sun.aas.inscanceRoot)/eonfig/keyatare. k<) ionax
=0rg.apache.derby. jdbe. ClientDrivere/ ptionsy
2 CF '\]a vax.net.s3l. trustScore=§ | com. sun. ans. 1n:|1::|rc:r:'cl:J /config/cacerta.Jla</Ivm-optiona>
-DANTLE USE_DIRECT CLASS LOADING=true</]vm-optlionas

23—Hwerlify:noned) vm- >

X=-Connectlo

Figure 2.26: Editing the start-up script of the GlassFish server instance to BTM-enable the instance
« Finally, save the file and restart the GlassFish server instance.

If a GlassFish server is running on Unix, and the eG agent monitoring the server has been deployed on that
server itself, then follow the steps below to BTM-enable that GlassFish server:

1. Follow step 1 - 7 above. While doing so, note that the jar and .props files will be available in the
lopt/egurkhallib/btm directory on the eG agent host.

2. Then, proceed to configure the GlassFish server with the path to the .jar and .props files. For this, you
need to edit the start-up script of the GlassFish server.

3. The first step towards this end is to open the start-up script. Then, insert the following lines in it:

<jvm-options>-javaagent:/opt/egurkha/lib/btm/eg btm.jar </jvm-options>

<jvm- options>- DEG PROPS HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS

FILES>></jvm-options>

For instance, if the .props files had been copied to the /opt/egurkhal/lib/btm/GlassFish1_8080
directory, the above specification will be:
<jvm-options>-javaagent:/opt/egurkha/lib/btm/eg btm.jar</jvm-options>

<jvm-options>-DEG_PROPS HOME=/opt/egurkha/lib/btm/GlassFishl 8080</jvm-options>

4. In Unix environments, if the eG agent is deployed on the same host as the GlassFish server, then both
the agent and the server will be running using different user privileges. In this situation, by default, the
eG BTM logs will not be created. In order to create the same, insert the following entry after the -DEG __
PROPS_HOME specification .

53

Installing and Configuring eG BTM

<jvm-options>-DEG LOG HOME=<<LogFile Path>></jvm-options>

Before providing this specification, make sure you create a folder for BTM logs - say, eGBTMLogs - in
any directory to which the target application server has access. Then, against, -DEG_LOG_HOME,
provide the full path to the eGBTMLogs directory. Where multiple instances on the same server are to
be BTM-enabled, you can use the same directory for writing log files of all instances.

For example, to create log files in the /App001/eGBTMLogs directory, the complete specification will
be as follows:

<jvm-options>-javaagent:/opt/egurkha/lib/btm/eg btm.jar</jvm-options>
<jvm-options>-DEG PROPS HOME=/opt/egurkha/lib/btm/GlassFishl 8080</jvm-options>
<jvm-options>-DEG LOG HOME=/App001/eGBTMLogs</jvm-options>

5. Finally, save the file and restart the GlassFish server.

2.5.2 Agentless Approach to BTM-Enabling an GlassFish server

If a GlassFish server is running on Windows, and the eG agent monitoring the server has been deployed on a
remote host in the environment, then follow the steps below to BTM-enable that GlassFish server:

1. Manage the GlassFish server as a separate component using the eG administrative interface. When
managing, make a note of the Nick name and Port number that you provide.

2. If multiple GlassFish server instances are operating on a single node, and you want to monitor each of
those instances, then you will have to manage each instance as a separate GlassFish server using the
eG administrative interface. When doing so, make a note of the Nick name and Port number using
which you managed each instance.

3. In the <EG_AGENT_INSTALL_DIR> \lib\btm directory (on Windows; on Unix, this will be
lopt/egurkhallib/btm), you will find the following files:

« eg_btm.jar
« btmLogging.props
« btmOther.props
« exclude.props
4. Next, log into the GlassFish server that is being monitored.
5. Create a new directory named, say btm, in any location on that server.

6. Under this directory, create a sub-directory. Take care to name this directory in the following format:
<Managed_ Component_ NickName>_ <Managed Component_Port>. For instance, if you have
managed the GlassFish server using the nick name GlassFish1 and the port number 8080, the sub-
directory should be named as GlassFish1_8080.

54

Installing and Configuring eG BTM

7.

10.

If you have managed multiple instances of the GlassFish server, then you will have to create multiple
sub-directories - one each for every instance. Each of these sub-directories should be named after the
Nick name and port number using which the corresponding instance has been managed in eG.

Once the new sub-directory is created, copy all the files from the btm directory of the remote agent to
the sub-directory on the GlassFish server. Where multiple sub-directories have been created, you will
have to copy the files to each of those directories.

Next, edit the btmOther.props file. You will find the following lines in the file:

Below property is BTM Server Socket Port, through which eG Agent Communicates
Restart is required, if any changes in this property

Default port is "13931"

BTM Port=13931
#

By default, theBTM_Port parameter is set to 13931. If you want to enable eG BTM on a different port,
then specify the same here. In this case, when configuring the Java Business Transactions test or the
Key Java Business Transactions test for the GlassFish server, make sure you configure the BTM
PORT parameter of the test with this port number.

Note:
When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default setting. In
this case therefore, the eG BTM will treat the host from which the very first 'measure request' comes in
as the Designated_Agent.

Below property is used to specify IP address of eG Agent which collectes BTM Data.

Default is None

Designated Agent=

#

55

Installing and Configuring eG BTM

11.
12.

13.

Note:

In case a specific Designated_Agent is not provided, and the eG BTM treats the host from which the
very first 'measure request' comes in as the Designated_Agent, then if such a Designated_Agent is
stopped or uninstalled for any reason, the eG BTM will wait for a maximum of 10 measure periods for
that 'deemed' Designated_Agent to request for metrics. If no requests come in for 10 consecutive
measure periods, then the eG BTM will begin responding to 'measure requests' coming in from any other
eG agent.

Finally, save the btmOther.props file.

Then, proceed to configure the GlassFish server with the path to the eg_btm.jar and .props files. To
achieve this, you can use one of the following two ways:

« Through the GlassFish Administration console
« By editing the start-up script of the GlassFish server instance

If you choose to use the GlassFish Administration console, then first, login to the console. Then, follow
the steps detailed in step 9 of the previous section, until you get to the step where you add two empty
rows in the JVM Options page.

Home ' About
User: admin Domain: domain1 Server: 192 168 8.251

GlassFish™ Server Open Source Edition
&

> i J0BC B
- ‘: JMS Resources
» (g INDI

5 JavaMail Sessions

| General Path Settings JVM Options | Profiler

JVM Options

Manage JVM options far the server Values containing one or more spaces must be enclosed in double quotes ("value sting”

¢ Resource Adapter Configs
v j@ Configurations
» |gi| default-config

» @il server-config

Configuration Name: server-config

g3 Admin Service
G Connector Service
{# EJB Comainer
> @ HTTP Service
=, JVM Settings
» gt Java Message Senvice
1} Logger Settings
| Monitoring
» @ Metwork Config
> 2 ORB
- g Saecurity
A System Properties
* g Thread Pools
4t Transaction Service
» @ Virual Servers
Ay Web Container

Options (37)
&) [8) [AdDIVMOption| Oclete

Select| Value
Javaagent E-\btm\GlassFish1_8080\eq_btm jar
-DEG_PROPS_HOME.E \btm\GlassFish1_8080
-Djava awt headless=true

u

-Djava security policy=${com. sun aas instanceRoot}/config/server policy

Diedix fileinstall. disableConfigSave=Talse

“Diosgi_shell. telnel. maxconn=1

-Dielix fileinstallpoll=5000

-Djava endorsed dirs=${com. sun aas installRoot) modules/endorsed${path separatorj${com sun aas installRoot
“Dosgi shel telnel pori=6666

“Dcom ctc wstx retumiullForDefaultNamespace=tue

XX +UnlockDiagnosticViOptions

Dicomsun_enterprise config. config_emiironment_factory_dass=com sun enterprise. config serverbeans Appsen
Djava ext dirs=5{com sun aas javaRoot)/lib/ext¥{path separatorS{com sun aas javaRoof)jrelib/extSipath sepa

Figure 2.27: Configuring the JVM arguments

In these rows, provide the following entries, as depicted by Figure 2.27.

-javaagent :<<PATH OF THE LOCAL FOLDER CONTAINING THE eg btm.jar FILE>>

-DEG PROPS HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

For instance, if the jar file and .props files had been copied to the E:\btm\GlassFish1_8080 directory,
the above specification will be:
-javaagent:E:\btm\GlassFishl 8080\eg btm.jar

—-DEG_PROPS_HOME=E:\btm\GlassFishl 8080

56

Installing and Configuring eG BTM

14. Finally, save the changes and restart the GlassFish server.

15. On the other hand, if you want to BTM-enable the GlassFish server by editing the start-up script of the

GlassFish serverinstance, then follow the steps below:

« Open the start-up script and insert the following lines in it:

<jvm- options>- javaagent:<<PATH TO THE eg btm.jar ON THE LOCAL FOLDER>></jvm-

options>

<jvm-options>-DEG PROPS HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE

FILES>></jvm-options>

For instance, if the jar file and the .props file had been copied to the E:\btm\weblogic_7001 directory,

the above specification will be:

<jvm-options>-javaagent:E:\btm\GlassFishl 8080\eg btm.jar</jvm-options>

<jvm-options>-DEG PROPS HOME=E:\btm\GlassFishl 8080</jvm-options>

Y T T T] | (- T T T T

< ws>-Di&va.ext.dirs=scom. =un.sas. javaRoot | /1ib/exts [path. separator) s |com. sun.sas. javaRoat | /jre/lib/exts [path. separator) §com. sun. sas

00t} /m lea/autostart/</Jvm-optionar
n.aas.instanceRoot)/config/ login. conf</ pticna>

rg.apache.felix.shell,org.apache. felix.gogo.runtime, org. apache. felix.gogo.shell, org
Filetnsealle/jvm-oprionss

-Didbe.drivers=org. apache . des

< m-opticnss
<jwm-oprions>—javasgent:E:\brm\GlassFishl B080\eg_bem. jarc/jvm—optionas
1 o

.instanceRoot]

.apache.felix.

Figure 2.28: Editing the start-up script of the GlassFish server instance to BTM-enable the instance

« Finally, save the file and restart the GlassFish server instance.

If a GlassFish server is running on Unix, and the eG agent monitoring the server has been deployed on a

remote host in the environment, then follow the steps below to BTM-enable that GlassFish server:

1. Follow steps 1-11 above.

2. Then, proceed to configure the GlassFish server with the path to the .jar and .props files. For this, you

need to edit the start-up script of the GlassFish server.

3. Thefirst step towards this end is to open the start-up script. Then, insert the following lines iniit:

<jvm-options>-javaagent :<<PATH TO THE eg btm.jar FILE>></jvm-options>

57

. PROPS

Installing and Configuring eG BTM

<jvm- options>- DEG PROPS HOME=<<PATH TO THE LOCAL FOLDER CONTAINING THE .PROPS

FILES>></jvm-options>

For instance, if the jar file and .props files have been copied to the /opt/btm/GlassFish1_8080 directory,
the above specification will be:

<jvm-options>-javaagent:/opt/btm/GlassFishl 8080/eg btm.Jjar</jvm-options>

<jvm-options>-DEG_PROPS HOME=/opt/btm/GlassFishl 8080</jvm-options>

4. Finally, save the file and restart the GlassFish server

2.6 Installing eG BTM on JBoss EAP

The steps for BTM-enabling JBoss EAP server will differ based on where the eG agent monitoring that server
has been deployed - whether on the JBoss EAP server, or on a remote host.

2.6.1 Agent-based Approach to BTM-Enabling a JBoss EAP Server

If a JBoss EAP server is running on Windows, and the eG agent monitoring the server has been deployed on
that server itself, then follow the steps below to BTM-enable that JBoss EAP server:

1.

Manage the JBoss EAP server using the eG administrative interface. When managing, make a note of
the Nick name and Port number that you provide.

If multiple JBoss EAP server instances are operating on a single host, and you want to BTM-enable all
the instances, then you will have to manage each instance as a separate JBoss EAP server using the
eG administrative interface. When doing so, make a note of the Nick name and Port number using
which you managed each instance.

Inthe <EG_AGENT_INSTALL_DIR>\lib\btm directory, you will find the following files:

. eg_btm.jar

« btmLogging.props
« btmOther.props

« exclude.props

Next, create a new directory under the <EG_AGENT_INSTALL_DIR>\lib\btm. Take care to name this
directory in the following format: <Managed Component_NickName>_<Managed Component_Port>.
For instance, if you have managed the JBoss EAP server using the nick name JBoss71 and the port
number 9990, the new directory under the btm directory should be named as JBoss1_9990.

If you have managed multiple JBoss EAP server instances running on a single host, then you will have
to create multiple sub-directories under the btm directory- one each for every instance. Each of these
sub-directories should be named after the Nick name and Port number using which the corresponding
instance has been managed in eG.

58

Installing and Configuring eG BTM

6. Once the new directory is created, copy the following files from the btm directory to the new directory. If
multiple directories have been created as described in step 5 above, then the following files should be
copied to all directories:

« btmLogging.props
« btmOther.props
« exclude.props

7. Next, edit the btmOther.props file. You will find the following lines in the file:

Below property is BTM Server Socket Port, through which eG Agent Communicates
Restart is required, if any changes in this property

Default port is "13931"

BTM Port=13931
#

By default, theBTMPort parameter is set to 13931. If you want to enable eG BTM on a different port,
then specify the same here. In this case, when configuring the Java Business Transactions test or the
Key Java Business Transactions test for the JBoss EAP server, make sure you configure the BTM
port parameter of the test with this port number.

Note:
When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default setting. In
this case therefore, the eG BTM will treat the host from which the very first 'measure request' comes in
as the Designated_Agent.

Below property is used to specify IP address of eG Agent which collectes BTM Data.

Default is None

Designated Agent=

#

59

Installing and Configuring eG BTM

Note:

In case a specific Designated_Agent is not provided, and the eG BTM treats the host from which the
very first 'measure request' comes in as the Designated_Agent, then if such a Designated_Agent is
stopped or uninstalled for any reason, the eG BTM will wait for a maximum of 10 measure periods for
that 'deemed' Designated_Agent to request for metrics. If no requests come in for 10 consecutive
measure periods, then the eG BTM will begin responding to 'measure requests' coming in from any other
eG agent.

8. Then, you need to configure the JBoss EAP server with the path to the eg_btm.jar and .props files. To
achieve this, you need to edit the start-up script of the JBoss EAP server. The first step towards that is
to open the start-up script.

9. Then, inthe file, enter the following lines, as depicted by Figure 2.29.

—-javaagent :<EG_AGENT INSTALL DIR>\1lib\btm\eg btm.jar

-DEG_PROPS HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

For instance, if the .props files had been copied to the <EG_ AGENT_ INSTALL_
DIR>\lib\btm\JBoss1_9990 directory, the above specification will be:

—-javaagent :<EG_AGENT INSTALL DIR>\1lib\btm\eg btm.jar

-DEG_PROPS HOME=<EG AGENT INSTALL DIR>\1lib\btm\JBossl 9990

F——#=-—-1-——¥--=-2. | G-==—#========f==== === =§====Q====f==== (=== === ==1====f====3 S -+

rem §

rem # Specify opticna to pass to the Java VM. Note, there are some additicnal
rem # opticna chat are always passed by run.bat.

renm

rem #

set =

ren §
met *

ren § Set che jboas. es.policy-permisaions property To true by default
T "JAV 3 -Djboss TR T e PP P Il 2 agent s O \=Gurkha) 1 ib\bEs)\JEosa]1 3350%eg bra. jar
3 DEG_PROPS HOME:C:\eGurkha'lib\btm\JBosal 9990y

rem § Make Byt = isible in all medule lcaders

l

loyments
9. jboss. byteman, com. ingularity, com.eg”

arugging

rem
9% -sgentlib nsport=dr_socket,addrass=E787, servar=y,

or shared m
5% -agentlib:)d

e puggLng
Cransport=dt_shmem, address=)boss, SRIver=y, suspend=n”

less mode
5% -Ljbosa.modules. lockless-true®

Figure 2.29: Editing the start-up script to BTM-enable a JBoss EAP server thatis monitored in an agent-based
manner

10. Finally, save the file and restart the JBoss EAP server.

If a JBoss EAP server is running on Unix, and the eG agent monitoring the server has been deployed on that
server itself, then follow the steps below to BTM-enable that server:

60

Installing and Configuring eG BTM

1.

4.

Follow steps 1 - 7 above. While doing so, note that the jar and .props files will be available in the
lopt/egurkhallib/btm directory on the eG agent host.

Then, you need to configure the JBoss EAP server with the path to the eg_btm.jar and .props files. To
achieve this, you need to edit the start-up script of the JBoss EAP server. The first step towards that is
to open the start-up script.

Then, in the file, enter the following lines, as depicted by Figure 2.30.

JAVA OPTS="SJAVA OPTS -javaagent:<<PATH TO the eg btm.jar>> -DEG PROPS HOME=<<PATH
TO LOCAL FOLDER CONTAINING THE

.PROPS FILES>>"

For instance, if the .props files had been copied to the /opt/egurkhallib/btm/JBoss1_9990 directory,
the above specification will be:

JAVA OPTS="SJAVA OPTS -javaagent:/opt/egurkha/lib/btm/eg btm.jar -DEG PROPS
HOME=/opt/egurkha/lib/btm/JBossl 9990"

e e T T T S T B e T T Tttt T T Bt Bt et Sl Rty et el [
if | "xsJBOSS MODULES SYSTEM PEGS" = "x*]: then

JBOSS_MODULES_SYSTEM_FWGS="o0rg.]boss.byteman®
1

& Uncomment the following line to prevent manipulation of JVM cptiona
by shell scripts.

#FRESERVE JAVA OPTS=true

Speclfy optlons ©o pass ©o the Java VM.

iE " 15" = "x”]: then

imal30im -Kmx1303m -XX:MaxPermSize=256m -Djava.net.preferlPviStack=true”
JRVA_OFT JAVR_OPIS -D)bosa.modules.systen. pkga=£JBO0SS MODULES SYSTEM PEGS ~Djava.awt.headlessstrus™
JHVA_OFTS="4JAVA_OFIS -Djbosa.modules.policy-permissions=trus”

&lse
echo "JBEVA_OFTS already set in environment; overriding default settings with values: SJAVAE OFTS"

£1

Sample JFDA settings for remote socket debugging
#JRVA_OFT5="5JAVA_OFTS -agentlib:jdwp=transpert=dt_sccket, addresa=ET87, server=y, suspend=n"

Sample JPOR sectings for shared memory debugging
#JAVA_OFPTS="4JAVA_OPTS -agentlib:jdup=transparc=dt_shmem, serverszy, suspend=n, address=jboss”

Uncomment to not use Jooss Modules lockless mode
#JAVR_OFTS="§JRAVR_OFTS -D)boas.modules.lockless=falae”

Uncomment to gather JBoss Modules metrics
#JEVL_OFTIS="5JAVA_OFTS -Dnboas.modules.metrics=true®

0 agan o a g e o gurkha/lib/bem/JBoas 8080

Figure 2.30: Editing the start-up script to BTM-enable a JBoss EAP server on Unix thatis monitored in an
agent-based manner

In Unix environments, if the eG agent is deployed on the same host as the JBoss EAP server, then both
the agent and the server will be running using different user privileges. In this situation, by default, the
eG BTM logs will not be created. In order to create the same, insert the following entry after the -DEG _
PROPS_HOME specification, but before the closing quotes.

-DEG_LOG_HOME=<<LogFile Path>>

61

Installing and Configuring eG BTM

Before providing this specification, make sure you create a folder for BTM logs - say, eGBTMLogs - in
any directory to which the target application server has access. Then, against, -DEG_LOG_HOME,
provide the full path to the eGBTMLogs directory. Where multiple instances on the same server are to
be BTM-enabled, you can use the same directory for writing log files of all instances.

For example, to create log files in the /App001/eGBTMLogs directory, the complete specification will
be as follows:

JAVA OPTS="$JAVA OPTS -javaagent:/opt/egurkha/lib/btm/eg btm.jar -DEG PROPS
HOME=/opt/egurkha/lib/btm/JBossl 9990 -DEG LOG_HOME=/App001/eGBTMLogs"

5. Finally, save the file and restart the JBoss EAP server.

2.6.2 Agentless Approach to BTM-Enabling an JBoss EAP server

If a JBoss EAP server is running on Windows, and the eG agent monitoring the server has been deployed on a
remote host in the environment, then follow the steps below to BTM-enable that JBoss EAP server:

1. Manage the JBoss EAP server as a separate component using the eG administrative interface. When
managing, make a note of the Nick name and Port number that you provide.

2. If multiple JBoss EAP server instances are operating on a single node, and you want to monitor each of
those instances, then you will have to manage each instance as a separate JBoss EAP server using the
eG administrative interface. When doing so, make a note of the Nick name and Port number using
which you managed each instance.

3. In the <EG_AGENT_INSTALL_DIR> \lib\btm directory (on Windows; on Unix, this will be
/opt/egurkhallib/btm), you will find the following files:

. eg_btm.jar
« btmLogging.props
« btmOther.props
« exclude.props
4. Next, loginto the JBoss EAP server that is being monitored.
5. Create a new directory named, say btm, in any location on that server.

6. Under this directory, create a sub-directory. Take care to name this directory in the following format:
<Managed_ Component_ NickName>_ <Managed Component_Port>. For instance, if you have
managed the JBoss EAP server using the nick name JBoss7 and the port number 9990, the sub-
directory should be named as JBoss1_9990.

7. If you have managed multiple instances of the JBoss EAP server, then you will have to create multiple
sub-directories - one each for every instance. Each of these sub-directories should be named after the
Nick name and port number using which the corresponding instance has been managed in eG.

8. Once the new sub-directory is created, copy all the files from the btm directory of the remote agent to
the sub-directory on the JBoss EAP server. Where multiple sub-directories have been created, you will

62

Installing and Configuring eG BTM

10.

have to copy the files to each of those directories.

Next, edit the btmOther.props file. You will find the following lines in the file:

Below property is BTM Server Socket Port, through which eG Agent Communicates
Restart is required, if any changes in this property

Default port is "13931"

BTM Port=13931
#

By default, theBTM_Port parameter is set to 13931. If you want to enable eG BTM on a different port,
then specify the same here. In this case, when configuring the Java Business Transactions test or the
Key Java Business Transactions test for the JBoss EAP server, make sure you configure the BTM
PORT parameter of the test with this port number.

Note:
When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default setting. In
this case therefore, the eG BTM will treat the host from which the very first 'measure request' comes in
as the Designated_Agent.

Below property is used to specify IP address of eG Agent which collectes BTM Data.

Default is None

Designated Agent=

#

Note:

In case a specific Designated_Agent is not provided, and the eG BTM treats the host from which the
very first 'measure request' comes in as the Designated_Agent, then if such a Designated_Agent is
stopped or uninstalled for any reason, the eG BTM will wait for a maximum of 10 measure periods for
that 'deemed' Designated_Agent to request for metrics. If no requests come in for 10 consecutive

63

Installing and Configuring eG BTM

11.
12.

13.

14.

measure periods, then the eG BTM will begin responding to 'measure requests' coming in from any other
eG agent.

Finally, save the btmOther.props file.

Then, you need to configure the JBoss EAP server with the path to the eg_btm.jar and .props files. To
achieve this, you need to edit the start-up script of the JBoss EAP server. The first step towards that is
to open the start-up script.

Then, insert the following lines in it (as depicted by Figure 2.31 below):

-javaagent:<<PATH TO THE eg btm.jar ON THE LOCAL FOLDER>>

-DEG_PROPS HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

For instance, if the jar file and the .props file had been copied to the E:\btm\JBoss1_9990 directory, the
above specification will be:

-javaagent:E:\btm\JBossl 9990\eg btm.jar

—-DEG_PROPS_HOME=E:\btm\JBossl_ 9990

Tt ettt 3 4 5 o et ettt et ettt ettt et Sefatataf Tetatatel St

|
i

Tem 4

rem 4 Specify options to pass to the Java VM. Note, there are some additional
rem # optiems that are always passed by run.bat.

rex §

Jdwp=transport=dt_shmem, address=)bosa, server=y, suspend=n”

.modules. lockless=true”

Figure 2.31: Editing the start-up script to BTM-enable a JBoss EAP server thatis monitored in an agentless
manner

Finally, save the file and restart the JBoss EAP server instance.

If a JBoss EAP server is running on Unix, and the eG agent monitoring the server has been deployed on a
remote host in the environment, then follow the steps below to BTM-enable that server:

1.
2.

Follow steps 1 - 11 above.

Then, you need to configure the JBoss EAP server with the path to the eg_btm.jar and .props files. To
achieve this, you need to edit the start-up script of the JBoss EAP server. The first step towards that is

64

Installing and Configuring eG BTM

to open the start-up script.

3. Then, inthe file, enter the following lines, as depicted by Figure 4.

JAVA OPTS="SJAVA OPTS -javaagent:<<PATH TO the eg btm.jar>> -DEG_ PROPS HOME=<<PATH
TO LOCAL FOLDER CONTAINING THE

.PROPS FILES>>"

For instance, if the jar file and the .props files had been copied to the /opt/btm/JBoss1_9990 directory,
the above specification will be:

JAVA OPTS="S$JAVA OPTS -javaagent:/opt/btm/JBossl 999/eg btm.jar -DEG PROPS
HOME=/opt/btm/JBossl 9990"

e e e e i e S e e e - e St - E] et
if ["x4JBO3S_MODULES_SYSTEM_PHBS™ = "x" |; then
JBOSS_MODULES_SYSTEM_PHG3="org.iboss.byteman”

fi

Uncomment the following line to prevent manipulation of JVM options
by shell acripts.

i

#FRESEEVE_JAVR_OFIS=true

§

Specify options to pass to the Java VM.

#

if ["x%JAVA_OFIS™ = "x" |; then
JHVRA_OF T-imsli0de -Nexl30dm -XN:MaNPermSize=256n -Djava.nst. preferIPviSrack=troe™
JAVA_OFTS="JAVA_OFTS -Djboss.modules.system.pkge=FJB0SS MODULES SYSTEM PHGS -Djave.awt.hesdless=true"|
JAVA_QFTS="8JAVA OFIS =Dibosa.modules.policy-permissicns=true”

else
eche "JAVR_OFTS already set in environment: overriding defaule sectings with waluss: §JAVA_OPTS™

fi

Sample JPOR setcings for remate socket debogying
#TAVA_OPTS="4JAVR_OPTS -agentlib:jdwp=transport=dt_sscket, address=8787, server=y, suspand=n"

Sample JPDR settings for shared memory debugging
#JAVA_OFIS="§JAVR_OFIS -agentlib:jdwp=transport=dc_ shmem, server=y, suspend=n, address=jboas™

Uncomment to not use JBoss Modules lockless mode
#JEVA_OFIS="5JAVR_OFIS -Diboss.modules.lockless=falae®

Tncomment Lo gacher JBoss Modules metrics
#JEVA_QFTS="5JAVA_OFTS -Djboss.modulss.metrica=true™

Figure 2.32: Editing the start-up script to BTM-enable a JBoss EAP server on Unix that is monitored in an
agentless manner

4. Finally, save the file and restart the JBoss EAP server.

2.7 Installing eG BTM on JBoss WildFly

The steps for BTM-enabling JBoss WildFly server will differ based on where the eG agent monitoring that
server has been deployed - whether on the JBoss WildFly server, or on a remote host.

2.7.1 Agent-based Approach to BTM-Enabling a JBoss WildFly Server

If a JBoss WildFly server is running on Windows, and the eG agent monitoring the server has been deployed
on that server itself, then follow the steps below to BTM-enable that JBoss WildFly server:

65

Installing and Configuring eG BTM

1. Manage the JBoss WildFly server using the eG administrative interface. When managing, make a note
of the Nick name and Port number that you provide.

2. If multiple JBoss WildFly server instances are operating on a single host, and you want to BTM-enable
all the instances, then you will have to manage each instance as a separate JBoss WildFly server using
the eG administrative interface. When doing so, make a note of the Nick name and Port number using
which you managed each instance.

3. Inthe <EG_AGENT_INSTALL_DIR>\lib\btm directory, you will find the following files:

- eg_btm.jar

« btmLogging.props
« btmOther.props

« exclude.props

4. Next, create a new directory under the <EG_AGENT_INSTALL_DIR>\lib\btm. Take care to name this
directory in the following format: <Managed_Component_NickName>_<Managed Component_Port>.
For instance, if you have managed the JBoss WildFly server using the nick name WildFly1 and the port
number 9990, the new directory under the btm directory should be named as WildFly1_9990.

5. If you have managed multiple JBoss WildFly server instances running on a single host, then you will
have to create multiple sub-directories under the btm directory- one each for every instance. Each of
these sub-directories should be named after the Nick name and Port number using which the
corresponding instance has been managed in eG.

6. Once the new directory is created, copy the following files from the btm directory to the new directory. If
multiple directories have been created as described in step 5 above, then the following files should be
copied to all directories:

« btmLogging.props
« btmOther.props
« exclude.props

7. Next, edit the btmOther.props file. You will find the following lines in the file:

Below property is BTM Server Socket Port, through which eG Agent Communicates
Restart is required, if any changes in this property

Default port is "13931"

BTM Port=13931
#

By default, theBTMPort parameter is set to 13931. If you want to enable eG BTM on a different port,

66

Installing and Configuring eG BTM

then specify the same here. In this case, when configuring the Java Business Transactions test or the
Key Java Business Transactions test for the JBoss WildFly server, make sure you configure the BTM
port parameter of the test with this port number.

Note:
When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default setting. In
this case therefore, the eG BTM will treat the host from which the very first 'measure request' comes in
as the Designated_Agent.

Below property is used to specify IP address of eG Agent which collectes BTM Data.

Default is None

Designated Agent=

#

Note:

In case a specific Designated_Agent is not provided, and the eG BTM treats the host from which the
very first 'measure request' comes in as the Designated_Agent, then if such a Designated_Agent is
stopped or uninstalled for any reason, the eG BTM will wait for a maximum of 10 measure periods for
that 'deemed' Designated_Agent to request for metrics. If no requests come in for 10 consecutive
measure periods, then the eG BTM will begin responding to 'measure requests' coming in from any other
eG agent.

8. Then, you need to configure the JBoss WildFly server with the path to the eg_btm.jar and .props files.
To achieve this, you need to edit the start-up script of the JBoss WildFly server. The first step towards
that is to open the start-up script.

9. Then, inthe file, enter the following lines, as depicted by Figure 2.33.

—-javaagent :<EG_AGENT INSTALL DIR>\1lib\btm\eg btm.jar

-DEG_PROPS HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

For instance, if the .props files had been copied to the <EG_ AGENT_ INSTALL_
DIR>\lib\btm\WildFly1_9990 directory, the above specification will be:
-javaagent :<EG_AGENT INSTALL DIR>\lib\btm\eg btm.jar

-DEG_PROPS HOME=<EG AGENT INSTALL DIR>\1lib\btm\WildFlyl 9990

67

Installing and Configuring eG BTM

rem §
Tem et "FROFILER=4JH!

rem ¢

rem § Specify the locaci
Tem # th
Tem # the 7
rem §
rem set “JAV

Tem #

zem § Spect use - only used if JAVA HOME is
rem § not =

Tem §
rem et "IN

rem b
rem # Specify options to pass to the Java VM. Hote, there are some additicnal
Tem § optiona that are always passsd by run.bat.

rem ¢

deployments

9. 1boas.byteman, com. eg, com. singularity”
2r remote socket

-sgent

ransport=dc_socket, sddress=2787, server=y, suspend=n"

Iem § Sample JPOA settings for shared memory debugging ¥

Figure 2.33: Editing the start-up script to BTM-enable a JBoss WildFly server that is monitored in an agent-
based manner

10. Finally, save the file and restart the JBoss WildFly server.

If a JBoss WildFly server is running on Unix, and the eG agent monitoring the server has been deployed on
that server itself, then follow the steps below to BTM-enable that server:

1. Follow steps 1 - 7 above. While doing so, note that the jar and .props files will be available in the
/opt/egurkhallib/btm directory on the eG agent host.

2. Then, you need to configure the JBoss WildFly server with the path to the eg_btm.jar and .props files.
To achieve this, you need to edit the start-up script of the server. The first step towards that is to open
the start-up script.

3. Then, in the file, enter the following lines, as depicted by Figure 2.34.
JAVA OPTS="SJAVA OPTS -javaagent:<<PATH TO the eg btm.jar>> -DEG PROPS HOME=<<PATH

TO LOCAL FOLDER CONTAINING THE

.PROPS FILES>>"

For instance, if the .props files had been copied to the /opt/egurkha/lib/btm/WildFly_8080 directory,
the above specification will be:

JAVA OPTS="SJAVA OPTS -javaagent:/opt/egurkha/lib/btm/eg btm.jar -DEG_PROPS
HOME=/opt/egurkha/lib/btm/WildFly 8080"

68

Installing and Configuring eG BTM

4.

5.

e e B e T e B e e T et ettt et Tttt Tttt p====fmmmmgm===ff====t====]====+]]
alas
echo “JAVA OFTS alreedy set in enviromment: overriding defeult settings with walues: 5JAVR_OFTS
fi
§ Sample JPDA settings for remote socket debugging
#JRVR_OFTS="5JAVA_OFTS -agentlib:jdwp=trensport=dt_socket, address=82787, server=y, suspend=n"
Sample JPDA settinga for shared memory debugging
#IAVA_OFIS="§JAVA_OPIS -agentlib:jdwp=Cransport=4dt_shmsm, server=y, suspend=n, address=1boss"”
Uncomment not use JBoas Modules lockless mode
#JRVA_OFIS="8JRVA_OFIS -Djboas.modules.lockless=false™
Uncomment to gather JBoss Modules metrics
'._'.‘-\‘,'.';_.'T:—"_'E—‘E.J.’;‘f.‘:_i- g -[iboss.modules.metricastrus”

Uncomment thiz ©o run with & security manager enabled
SECMGR="trus”

Uncomment this in order to be able to run WildFly on FreeBSD
mplemented™ message in dmesg outpuc
18.8pi.SelectorProvider=sun.nin.ch. PallSeleccarProvider™

Figure 2.34: Editing the start-up script to BTM-enable a JBoss WildFly server on Unix thatis monitored in an
agent-based manner

In Unix environments, if the eG agent is deployed on the same host as the JBoss WildFly server, then
both the agent and the server will be running using different user privileges. In this situation, by default,
the eGBTM logs will not be created. In order to create the same, insert the following entry after the -
DEG_PROPS_HOME specification, but before the closing quotes.

-DEG_LOG_HOME=<<LogFile Path>>

Before providing this specification, make sure you create a folder for BTM logs - say, eGBTMLogs - in
any directory to which the target application server has access. Then, against, -DEG_LOG_HOME,
provide the full path to the eGBTMLogs directory. Where multiple instances on the same server are to
be BTM-enabled, you can use the same directory for writing log files of all instances.

For example, to create log files in the /App001/eGBTMLogs directory, the complete specification will
be as follows:

AVA OPTS="S$JAVA OPTS -javaagent:/opt/egurkha/lib/btm/eg btm.jar -DEG PROPS
HOME=/opt/eqgurkha/lib/btm/WildFly 8080 -DEG LOG HOME=/App001/eGBTMLogs"

Finally, save the file and restart the JBoss WildFly server.

2.7.2 Agentless Approach to BTM-Enabling an JBoss WildFly server

If a JBoss WildFly server is running on Windows, and the eG agent monitoring the server has been deployed
on a remote host in the environment, then follow the steps below to BTM-enable that JBoss WildFly server:

1.

Manage the JBoss WildFly server as a separate component using the eG administrative interface.
When managing, make a note of the Nick name and Port number that you provide.

If multiple JBoss WildFly server instances are operating on a single node, and you want to monitor each
of those instances, then you will have to manage each instance as a separate JBoss WildFly server
using the eG administrative interface. When doing so, make a note of the Nick name and Port number
using which you managed each instance.

69

Installing and Configuring eG BTM

3.

10.

In the <EG_AGENT_INSTALL_DIR>\lib\btm directory (on Windows; on Unix, this will be the
lopt/egurkhallib/btm directory) on the eG agent host, you will find the following files:

« eg_btm.jar

« btmLogging.props

« btmOther.props

« exclude.props

Next, log into the JBoss WildFly server that is being monitored.
Create a new directory named, say btm, in any location on that server.

Under this directory, create a sub-directory. Take care to name this directory in the following format:
<Managed Component_NickName>_<Managed Component_Port>. For instance, if you have
managed the JBoss WildFly server using the nick name WildFly1 and the port number 9990, the sub-
directory should be named as WildFly1_9990.

If you have managed multiple instances of the JBoss WildFly server, then you will have to create
multiple sub-directories - one each for every instance. Each of these sub-directories should be named
after the Nick name and port number using which the corresponding instance has been managed in eG.

Once the new sub-directory is created, copy all the files from the btm directory of the remote agent to
the sub-directory on the JBoss WildFly server. Where multiple sub-directories have been created, you
will have to copy the files to each of those directories.

Next, edit the btmOther.props file. You will find the following lines in the file:

Below property is BTM Server Socket Port, through which eG Agent Communicates
Restart is required, if any changes in this property

Default port is "13931"

BTM Port=13931
#

By default, theBTM_Port parameter is set to 13931. If you want to enable eG BTM on a different port,
then specify the same here. In this case, when configuring the Java Business Transactions test or the
Key Java Business Transactions test for the JBoss WildFly server, make sure you configure the BTM
PORT parameter of the test with this port number.

Note:
When BTM-enabling multiple instances on the same server, make sure you configure a different
BTM Port for each instance.

70

Installing and Configuring eG BTM

11.
12.

13.

Also, by default, the Designated_Agent parameter will be empty; do not disturb this default setting. In
this case therefore, the eG BTM will treat the host from which the very first 'measure request' comes in
as the Designated_Agent.

Below property is used to specify IP address of eG Agent which collectes BTM Data.

Default is None

Designated Agent=

#

Note:

In case a specific Designated_Agent is not provided, and the eG BTM treats the host from which the
very first 'measure request' comes in as the Designated_Agent, then if such a Designated_Agent is
stopped or uninstalled for any reason, the eG BTM will wait for a maximum of 10 measure periods for
that 'deemed' Designated_Agent to request for metrics. If no requests come in for 10 consecutive
measure periods, then the eG BTM will begin responding to 'measure requests' coming in from any other
eG agent.

Finally, save the btmOther.props file.

Then, you need to configure the JBoss WildFly server with the path to the eg_btm.jar and .props files.
To achieve this, you need to edit the start-up script of the JBoss WildFly server. The first step towards
that is to open the start-up script.

Then, insert the following lines in it (as depicted by Figure 2.35 below):

-javaagent :<<PATH TO THE eg btm.jar ON THE LOCAL FOLDER>>

-DEG PROPS HOME=<<PATH OF THE LOCAL FOLDER CONTAINING THE .PROPS FILES>>

For instance, if the jar file and the .props file had been copied to the E:\btm\WildFly1_9990 directory,
the above specification will be:

-javaagent:E:\btm\WildFlyl 9990\eg btm.Jjar

-DEG_PROPS_HOME=E:\btm\WildFlyl 9990

71

Installing and Configuring eG BTM

L = 2 5 8 o o 2 e ~
zem §

rem # Default is to not load & JBoss Profiler configuration file,

Tem 4

rem set "PROFILER-3JBOSS_HOMEY\bin\jboss-profiler.propersies®

rem #

rem & Speci. (it is recoemended that
rem # thi \bin\Java®" will be used as
rem § th will be used (ses belew).
rem #

rem set “JAVA_HOME=C:\opt\jdkl.6.0_23%

rem #

rem § 3pecify the exact Java VM executable to use - only used if JAVA_HOME is
tem 4 not aet, Default iz “jeva”.

rem #

rem set “JAVA=C:\opt\)dkl.&.0_23\bin\java®™

Tem &
Tem # Speci

dcna to pass to the Java VM. Note, there are some additional

that are always passed by rum.bac.

¥
rem # Make ByTeman classes 2ible in all module loaders
Tem # Th to inject Byteman rules into AST deplovments
set “JA" ,_OFTS% -Diboaa.modules.systen.pkga=org.Jboss. bytesan, com. eg, com. singularicy™
for remote socket dsbugging
v
< >

Figure 2.35: Editing the start-up script to BTM-enable a JBoss WildFly server that is monitored in an agentless
manner

14. Finally, save the file and restart the JBoss WildFly server instance.

If a JBoss WildFly server is running on Unix, and the eG agent monitoring the server has been deployed on a
remote host in the environment, then follow the steps below to BTM-enable that server:

1. Follow steps 1-11 above.

2. Then, you need to configure the JBoss WildFly server with the path to the eg_btm.jar and .props files.
To achieve this, you need to edit the start-up script of the JBoss WildFly server. The first step towards
that is to open the start-up script.

3. Then, in the file, enter the following lines, as depicted by Figure 2.36.

JAVA OPTS="S$JAVA OPTS -javaagent:<<PATH TO the eg btm.jar>> -DEG PROPS HOME=<<PATH
TO LOCAL FOLDER CONTAINING THE

.PROPS FILES>>"

For instance, if the .props files had been copied to the /opt/btm/WildFly_8080 directory, the above
specification will be:

JAVA OPTS="$JAVA OPTS -javaagent:/opt/btm/WildFly 8080/eg btm.jar -DEG PROPS
HOME=/opt/btm/WildFly 8080"

72

Installing and Configuring eG BTM

e B B e B e S B B T B Ty e - ey
lelae

eche “JAVR OFTS already set in environment; overriding default setcings with values: §JAVR OFTS®
i

4 Sample JPDA sectingas for remote socket debugging
#JRAVA_OFTS="%JAVA_OFIS -agentlib:jdwp=transport=dc_socket,addrese=37E7, server=y, suapend=n=

Sample JPDA settings for shared memory debugging
#JRVE_OFTS="6JAVA_OFTS -agentlib:jdwp=transport=dt_shmem, server=y, suspend=n, addreaa=jboas™

Uncomment to not use JBoss Modules lockless mode
$JAVA_DFTS="§JAVA_OPTS -Djbosa.modules.lockless=false™

Uncomment to gather JEpas Modules metrica
#JAVA_OFTS="§JAVA_CPTS -Djbosa.nsdules.merrics=crua”

Uncomment this to run with a security manager enabled
+ SECHGE="trus"

Uncomment this in order to be eble to run WildFly on FreeBSD
when you get "epoll create function not implemented® message in dmesg ocutput
#JAVA_OFTS="¢JAVA_OFTS -Djava.nic.channels.spi.SelectorProvider=sun.nic.ch.PollSelectorProvider”

Figure 2.36: Editing the start-up script to BTM-enable a JBoss WildFly server on Unix thatis monitored in an
agentless manner

4. Finally, save the file and restart the JBoss WildFly server.

73

Monitoring Business Transactions

3
Monitoring Business Transactions

Once the eG Application Server Agent is installed and configured on the JVM nodes, it will start tracking
transaction requests and storing transaction path and metrics in memory.

To collect these metrics, you then need to configure the eG agent to run the Java Business Transactions
test. To focus on only those transactions you deem important, you can optionally configure the eG agent to
run the Key Java Business Transactions test.

The metrics reported are then captured into an Application Transactions layer. This layer will appear as the
first layer of the monitoring model of the application server that is BTM-enabled.

ﬂ Application Transactions

hd a Java Business Transactions 3
X [Easykart/StorelLocator. jsp
[EasykKar/BrowseProducts jsp
[Easykart/CheckOrderStatus jsp
« [EasykartjAddToCart jsp
o [Easykart/Login jsp
o [Easykart/Faymentfage jsp

o JEasyEER Search jip

w [EasyKart/ShippingPage jsp

& Weblogic Container

O v

@ Newwork

@ Operating System

Figure 3.1: The test mapped to the Application Transactions layer

This chapter discusses how to configure these tests and details the metrics reported by each test.

3.1 Java Business Transactions Test

The responsiveness of a transaction is the key determinant of user experience with that transaction; if
response time increases, user experience deteriorates. To make users happy, a Java business transaction

74

Monitoring Business Transactions

should be rapidly processed by each of the JVM nodes in its path. Processing bottlenecks on a single JVM
node can slowdown/stall an entire business transaction or can cause serious transaction errors. This in turn
can badly scar the experience of users. To avoid this, administrators should promptly identify
slow/stalled/errored transactions, isolate the JVM node on which the slowness/error occurred, and uncover
what caused the aberration on that node — is it owing to SQL queries executed by the node? Or is it because of
external calls — eg., async calls, SAP JCO calls, HTTP calls, etc. - made by that node? The Java Business
Transactions test helps with this!

This test runs on a BTM-enabled JVM in an IT infrastructure, tracks all the transaction requests received by
that JVM, and groups requests based on user-configured pattern specifications. For each transaction pattern,
the test then computes and reports the average time taken by that JVM node to respond to the transaction
requests of that pattern. In the process, the test identifies the slow/stalled transactions of that pattern, and
reports the count of such transactions and their responsiveness. Detailed diagnostics provided by the test
accurately pinpoint the exact transaction URLs that are slow/stalled, the total round-trip time of each
transaction, and also indicate when such transaction requests were received by that node. The slowest
transaction in the group can thus be identified.

Moreover, to enable administrators to figure out if the slowness can be attributed to a bottleneck in SQL query
processing, the test also reports the average time the transactions of each pattern took to execute SQL
queries. If a majority of the queries are slow, then the test will instantly capture the same and notify
administrators.

Additionally, the test promptly alerts administrators to error transactions of each pattern. To know which are
the error transactions, the detailed diagnosis capability of the test can be used.

This way, the test effortlessly measures the performance of each transaction to a JVM node, highlights
transactions that are under-performing, and takes administrators close to the root-cause of poor transaction
performance.

Target of the Test: A BTM-enabled JVM

Agent deploying the test : An internal/remote agent

Output of the test: One set of results for each grouped URL

Test parameters:

1. TEST PERIOD - How often should the test be executed
2. HOST - The host for which the test is to be configured

3. BTM PORT -Specify the port number specified as BTM_Port in the btmOther.props file on the JVM
node being monitored. If the JVM is being monitored in an agent-based manner, then the
btmOther.props file will be in the <EG_AGENT_INSTALL_DIR>\lib\btm directory.

75

Monitoring Business Transactions

4. MAX URL SEGMENTS - This test groups transaction URLs based on the URL segments count
configured for monitoring and reports aggregated response time metrics for every group. Using this
parameter, you can specify the number of URL segments based on which the transactions are to be
grouped.

URL segments are the parts of a URL (after the base URL) or path delimited by slashes. So if you had
the URL: http://www.eazykart.com/web/shopping/sportsgear/login.jsp, then http://www.eazykart.com
will be the base URL or domain,/web will be the first URL segment, /shoppingwill be the second URL
segment, and /sportsgear will be the third URL segment, and/login.jsp will be the fourth URL segment.
By default, this parameter is set to 3. This default setting, when applied to the sample URL provided
above, implies that the eG agent will aggregate response time metrics to all transaction URLs under
/web/shopping/sportsgear. Note that the base URL or domain will not be considered when counting
URL segments. This in tum means that, if the JVM node receives transaction requests for the URLs
such as http://www.eazykart.com/web/shopping/sportsgear/login.jsp,
http://www.eazykart.com/web/shopping/sportsgear/jerseys.jsp,
http://www.eazykart.com/web/shopping/sportsgear/shoes.jsp,
http://www.eazykart.com/web/shopping/sportsgear/gloves.jsp, etc., then the eG agent will track the
requests and responses for all these URLs, aggregate the results, and present the aggregated metrics
for the descriptor /web/shopping/sportsgear. This way, the test will create different transaction groups
based on each of the third-level URL segments — eg. /web/shopping/weddings, /web/shopping/holiday,
/web/shopping/gifts etc. —and will report aggregated metrics for each group so created.

If you want, you can override the default setting by providing a different URL segment number here. For

instance, your specification can be just 2 . In this case, for the
URLhttp://www.eazykart.com/web/shopping/login.jsp, the test will report metrics for the descriptor
web/shopping.

5. EXCLUDED PATTERNS - By default, this test does not track requests to the following URL pattemns:

*ttf, *.otf, *.woff, *.woff2, *.eot, *.cff, *.afm, *.Iwfn, *ffil, *.fon, *.pfm, *.pfb, *.std, *.pro, *.xsf, *jpg,
*jpeg, *jpe, *jif, *jfif, *jfi, *jp2, *j2k, *.jpf, *jox, *jom, *jxr, *.hdp, *.wdp, *.mj2, *.webp, *.gif, *.png,
*.apng, *.mng, *tiff, *tif, *.xbm, *.bmp, *.dib, *.svg, *.svgz, *.mpg, *.mpeg, *.mpeg2, *.avi, *.wmv,

.mov, *.rm, *.ram, *.swf, *flv, *.ogg, *webm, *.mp4, *.ts, *mid, *.midi, *.rm, *.ram, *.wma,
*.wav, *.0g9g, *mp3, *.mp4, *.css, *js, *.ico|/egurkha*

*

.aac,

If required, you can remove one/more patterns from this default list, so that such patterns are
monitored, or can append more patterns to this list in order to exclude them from monitoring.

6. METHOD EXEC CUTOFF (MS)— From the detailed diagnosis of slow/stalled/error transactions, you can
drill down and perform deep execution analysis of a particular transaction. In this drill-down, the
methods invoked by that slow/stalled/error transaction are listed in the order in which the transaction
calls the methods. By configuring a METHOD EXECUTION CUTOFF, you can make sure that methods
that have been executing for a duration greater the specified cutoff are alone listed when performing
execution analysis. For instance, if you specify 5 here, then the Execution Analysis window for a
slow/stalled/error transaction will list only those methods that have been executing for over 5
milliseconds. This way, you get to focus on only those methods that could have caused the slowness,
without being distracted by inconsequential methods. By default, the value of this parameter is set to

76

Monitoring Business Transactions

10.

1.

12.

13.

14.

250 ms.

SQL EXECUTION CUTOFF (MS) — Typically, from the detailed diagnosis of a slow/stalled/error
transaction on a JVM node, you can drill down to view the SQL queries (if any) executed by that
transaction from that node and the execution time of each query. By configuring a SQL EXECUTION
CUTOFF, you can make sure that queries that have been executing for a duration greater the specified
cutoff are alone listed when performing query analysis. For instance, if you specify 5 here, then for a
slow/stalled/error transaction, the SQL Queries window will display only those queries that have been
executing for over 5 milliseconds. This way, you get to focus on only those queries that could have
contributed to the slowness. By default, the value of this parameter is set to 10 ms.

HEALTHY URL TRACE — By default, this flag is set to No. This means that eG will not collect detailed
diagnostics for those transactions that are healthy. If you want to enable the detailed diagnosis
capability for healthy transactions as well, then set this flag to Yes.

MAX HEALTHY URLS PER TEST PERIOD — This parameter is applicable only if the HEALTHY URL
TRACE flag is set to ‘Yes’. Here, specify the number of top-n transactions that should be listed in the
detailed diagnosis of the Healthy transactions measure, every time the test runs. By default, this is set
to 50, indicating that the detailed diagnosis of the Healthy transactions measure will by default list the
top-50 transactions, arranged in the descending order of their response times.

MAX SLOW URLS PER TEST PERIOD - Specify the number of top-n transactions that should be listed in
the detailed diagnosis of the Slow transactions measure, every time the test runs. By default, this is set
to 10, indicating that the detailed diagnosis of the Slow transactions measure will by default list the top-
10 transactions, arranged in the descending order of their response times.

MAX STALLED URLS PER TEST PERIOD - Specify the number of top-n transactions that should be
listed in the detailed diagnosis of the Stalled transactions measure, every time the test runs. By default,
this is set to 10, indicating that the detailed diagnosis of the Stalled transactions measure will by default
list the top-10 transactions, arranged in the descending order of their response times.

MAX ERROR URLS PER TEST PERIOD - Specify the number of top-n transactions that should be listed
in the detailed diagnosis of the Error transactions measure, every time the test runs. By default, this is
set to 10, indicating that the detailed diagnosis of the Error transactions measure will by default list the
top-10 transactions, in terms of the number of errors they encountered.

ADVANCED SETTINGS — To optimize transaction performance and conserve space in the eG database,
many restraints have been applied by default on the agent’s ability to collect and report detailed
diagnostics. Depending upon how well-tuned your eG database is and the level of visibility you require
into transaction performance, you may choose to either retain these default settings or override them. If
you choose not to disturb the defaults, then set the ADVANCED SETTINGS flag to No. If you want to
modify the defaults, then set the ADVANCED SETTINGS flag to Yes.

POJO METHOD TRACING LIMIT and POJO METHOD TRACING CUTOFF TIME - These parameters will
appear only if the ADVANCED SETTINGS flag is set to ‘true’. Typically, if the MONITORING MODE of
this test is set to Profiler , then, as part of the detailed diagnostics of a transaction, eG reports the
execution time of every POJO, non-POJO, and recursive (i.e. methods that call themselves) method
call that a JVM node makes when processing that transaction. Of these, POJO method calls are the
most expensive, as they are usually large in number. To ensure that attempts made to collect detailed

77

Monitoring Business Transactions

15.

16.

measures related to POJO method calls do not impact the overall responsiveness of the monitored
transaction, eG, by default, collects and reports the execution time of only the following POJO method
calls:

o Thefirst 1000 POJO method calls made by the target JVM node for that transaction; (OR)

o The POJO method calls that were made by the target JVM node within 10 seconds from the start of
the monitored transaction on that node;

Accordingly, the POJO METHOD TRACING LIMIT is set to 1000 by default, and the POJO METHOD
TRACING CUTOFF TIME is set to 10 (seconds) by default. Of these two limits, whichever limit is
reached first will automatically be applied by eG for determining when to stop POJO tracing. In other
words, once a JVM node starts processing a transaction, the agent begins tracking the POJO method
calls made by that node for that transaction. In the process, if the agent finds that the configured tracing
limit is reached before the tracing cutoff time is reached, then the agent will stop tracking the POJO
method calls, as soon as the tracing limit is reached. On the other hand, if the tracing limit is not
reached, then the agent will continue tracking the POJO method calls until the tracing cutoff time is
reached. At the end of the cutoff time, the agent will stop tracking the POJO method calls. For
instance, if the JVM node makes 1000 POJO method calls within say, 6 seconds from when it began
processing the transaction, then the eG agent will not wait for the cutoff time of 10 seconds to be
reached; instead, it will stop tracing at the end of the thousandth POJO method call, and report the
execution time of each of the 1000 calls alone. On the other hand, if the JVM node does not make over
1000 POJO method calls till the 10 second cutoff expires, then the eG agent continues tracking the
POJO method calls till the end of 10 seconds, and reports the details of all those that were calls made
till the cutoff time.

Depending upon how many POJO calls you want to trace and how much overhead you want to impose
on the agent and on the transaction, you can increase / decrease the POJO METHOD TRACING LIMIT
and POJO METHOD TRACING CUTOFF TIME specifications.

NON-POJO METHOD TRACING LIMIT — This parameter will appear only if the ADVANCED
SETTINGS flag is set to ‘true’. By default, when reporting the detailed diagnosis of a transaction on a
particular JVM node, this test reports the execution time of only the first 1000 non-POJO method calls
(which includes JMS, JCO, HTTP, Java, SQL, etc.) that the target JVM node makes for that
transaction. This is why, the non-pojo method tracing limit parameter is set to 1000 by default. If you
want, you can change the tracing limit to enable the test to report the details of more or fewer non-
POJO method calls made by a JVM node. While a high value for this parameter may take you closer to
identifying the non-POJO method that could have caused the transaction to slowdown on a particular
JVM node, it may also marginally increase the overheads of the transaction and the eG agent.

RECURSIVE METHOD TRACING LIMIT — This parameter will appear only if the ADVANCED
SETTINGS flag is set to ‘true’. A recursive method is a method that calls itself. By default, when
reporting the detailed diagnosis of a transaction on a particular JVM node, this test reports the
execution time of only the first 1000 recursive method calls (which includes JMS, JCO, HTTP, Java,
SQL, etc.) that the target JVM node makes for that transaction. This is why, the RECURSIVE METHOD
TRACING LIMIT parameter is set to 1000 by default. If you want, you can change the tracing limit to
enable the test to report the details of more or fewer recursive method calls made by a JVM node. While
a high value for this parameter may take you closer to identifying the recursive method that could have

78

Monitoring Business Transactions

17.

18.

19.

20.

caused the transaction to slowdown on a particular JVM node, it may also marginally increase the
overheads of the transaction and the eG agent.

EXCEPTION STACKTRACE LINES —This parameter will appear only if the ADVANCED SETTINGS
flag is set to ‘true’. As part of detailed diagnostics, this test, by default, lists the first 10 stacktrace
lines of each JavaScript error/exception that it captures on the target JVM node for a specific
transaction, so as to enable easy and efficient troubleshooting. This is why, the EXCEPTION
STACKTRACE LINES parameter is set to 10 by default. If required, you can have this test display more
or fewer stacktrace lines by overriding this default setting.

INCLUDED EXCEPTIONS — This parameter will appear only if the ADVANCED SETTINGS flag is set
to ‘true’. By default, this test flags the transactions in which the following errors/exceptions are
captured, as Error transactions:

« All unhandled exceptions;
« Both handled and unhandled SQL exceptions/errors

This implies that if a programmatically-handled non-SQL exception occurs in a transaction, such a
transaction, by default, will not be counted as an Error transaction by this test.

Sometimes however, administrators may want to be alerted even if some non-SQL exceptions that
have already been handled programmatically, occur. This can be achieved by configuring a comma-
separated list of these exceptions in the INCLUDED EXCEPTIONS text box. Here, each exception you
want to include has to be defined using its fully qualified exception class name. For instance, your
INCLUDED EXCEPTIONS specification can be as follows: java.lang.NullPointerException,
java.lang.IndexOutOfBoundsException. Note that wild card characters cannot be used as part of
your specification. Once the exceptions to be included are configured, then this test will count all
transactions in which such exceptions are captured as Error transactions.

IGNORED EXCEPTIONS — This parameter will appear only if the ADVANCED SETTINGS flag is set
to ‘true’. By default, this test flags the transactions in which the following errors/exceptions are
captured, as Error transactions:

« All unhandled exceptions;
« Both handled and unhandled SQL exceptions/errors

Sometimes however, administrators may want eG to disregard certain unhandled exceptions (or
handled SQL exceptions), as they may not pose any threat to the stability of the transaction or to the
web site/web application. To achieve this, administrators can configure a comma-separated list of such
inconsequential exceptions in the IGNORED EXCEPTIONS text box. Here, you need to configure each
exception you want to exclude using its fully qualified exception class name. For instance, your
EXCLUDED EXCEPTIONS specification can be as follows:
java.sqgl.SQLException,java.io.FileNotFoundException. Note that wild card characters cannot be
used as part of your specification. Once the exceptions to be excluded are configured, then this test
will exclude all transactions in which such exceptions are captured from its count of Error transactions.

IGNORED CHARACTERS — This parameter will appear only if the ADVANCED SETTINGS flag is
set to ‘true’. By default, eG excludes all transaction URLs that contain the ‘" character from
monitoring. If you want eG to ignore transaction URLs with any other special characters, then specify

79

Monitoring Business Transactions

21.

22.

these characters as a comma-separated list in the IGNORED CHARACTERS text box. For instance,
your specification can be: \\,&,~

MAX GROUPED URLS PER MEASURE PERIOD - This parameter will appear only if the ADVANCED
SETTINGS flag is set to ‘true’. This test groups URLs according to the MAX URL SEGMENTS
specification. These grouped URLs will be the descriptors of the test. For each grouped URL, response
time metrics will be aggregated across all transaction URLSs in that group and reported.

When monitoring web sites/web applications to which the transaction volume is normally high, this test
may report metrics for hundreds of descriptors. If all these descriptors are listed in the Layers tab page
of the eG monitoring console, it will certainly clutter the display. To avoid this, by default, the test
displays metrics for a maximum of 50 descriptors —i.e., 50 grouped URLs alone — in the eG monitoring
console, during every measure period. This is why, the MAX GROUPED URLS PER MEASURE PERIOD
parameter is set to 50 by default.

To determine which 50 grouped URLs should be displayed in the eG monitoring console, the eG BTM
follows the below-mentioned logic:

« Top priority is reserved for URL groups with error transactions. This means that eG BTM first scans
URL groups for error transactions. If error transactions are found in 50 URL groups, then eG BTM
computes the aggregated response time of each of the 50 groups, sorts the error groups in the
descending order of their response time, and displays all these 50 groups alone as the descriptors of
this test, in the sorted order.

« On the other hand, if error transactions are found in only one / a few URL groups — say, only 20 URL
groups — then, eG BTM will first arrange these 20 grouped URLs in the descending order of their
response time. It will then compute the aggregated response time of the transactions in each of the
other groups (i.e., the error-free groups) that were auto-discovered during the same measure period.
These other groups are then arranged in the descending order of the aggregated response time of
their transactions. Once this is done, eG BTM will then pick the top-30 grouped URLs from this
sorted list.

In this case, when displaying the descriptors of this test in the Layers tab page, the 20 error groups
are first displayed (in the descending order of their response time), followed by the 30 ‘error-free’
groups (also in the descending order of their response time).

At any given point in time, you can increase/decrease the maximum number of descriptors this test
should supportby modifying the value of the MAX GROUPED URLS PER MEASURE PERIOD
parameter.

MAX SQL QUERIES PER TRANSACTION — This parameter will appear only if the ADVANCED
SETTINGS flag is set to ‘true’. Typically, from the detailed diagnosis of a slow/stalled/error transaction
on a JVM node, you can drill down to view the SQL queries (if any) executed by that transaction from
that node and the execution time of each query. By default, eG picks the first 500 SQL queries
executed by the transaction, compares the execution time of each query with the SQL EXECUTION
CUTOFF configured for this test, and displays only those queries with an execution time that is higher
than the configured cutoff. This is why, the MAX SQL QUERIES PER TRANSACTION parameter is set to
500 by default.

80

Monitoring Business Transactions

23.

24,

25.

To improve agent performance, you may want the SQL EXECUTION CUTOFF to be compared with the
execution time of a less number of queries — say, 200 queries. Similary, to increase the probability of
capturing more number of long-running queries, you may want the sql execution cutoff to be compared
with the execution time of a large number of queries — say, 1000 queries. For this, you just need to
modify the MAX SQL QUERIES PER TRANSACTION specification to suit your purpose.

TIMEOUT- By default, the eG agent will wait for 1000 milliseconds for a response from the eG
Application Server agent. If no response is received, then the test will timeout. You can change this
timeout value, if required.

DD FREQUENCY — Refers to the frequency with which detailed diagnosis measures are to be generated
for this test. The default is 1:1. This indicates that, by default, detailed measures will be generated
every time this test runs, and also every time the test detects a problem. You can modify this
frequency, if you so desire. Also, if you intend to disable the detailed diagnosis capability for this test,
you can do so by specifying none against DD FREQUENCY.

DETAILED DIAGNOSIS — To make diagnosis more efficient and accurate, the eG Enterprise suite
embeds an optional detailed diagnostic capability. With this capability, the eG agents can be configured
to run detailed, more elaborate tests as and when specific problems are detected. To enable the
detailed diagnosis capability of this test for a particular server, choose the On option. To disable the
capability, click on the Off option.

The option to selectively enable/disable the detailed diagnosis capability will be available only if the
following conditions are fulfilled:

« The eG manager license should allow the detailed diagnosis capability

« Both the normal and abnormalfrequencies configured for the detailed diagnosis measures should not
be 0.

Measures reported by the test:

Measurement Description Measllj:ﬁrent Interpretation

All transactions |Indicates the total|Number By comparing the value of this measure
number of requests across transaction patterns, you can
received for transactions identify the most popular transaction
of this pattern during the patterns. Using the detailed diagnosis of
last measurement this measure, you can then figure out
period. which specific transactions of that pattern

are most requested.
For the Summary descriptor, this
measure will reveal the total number of

81

Monitoring Business Transactions

Measurement

Description

Measurement
Unit

Interpretation

transaction requests received by the target
JVM during the last measurement period.
This is a good indicator of the transaction
workload on that JVM.

Avg response time

Indicates the average
time taken by the
transactions of this
pattern to complete
execution.

Secs

Compare the value of this measure across
patterns to isolate the type of transactions
that were taking too long to execute. You
can then use the detailed diagnosis of the
All transactions measure of that group to
know how much time each transaction in
that group took to execute. This will lead
you to the slowest transaction.

For the Summary descriptor, this
measure will reveal the average
responsiveness of all the transaction
requests received by the target JVM
during the last measurement period. An
abnormally low value for this measure for
the Summary descriptor could indicate a
serious processing bottleneck on the
target JVM.

Healthy
transactions

Indicates the number of
healthy transactions of]
this pattern.

Number

By default, this measure will report the
count of transactions with a response time
less than 4000 milliseconds. You can
change this default setting by modifying
the thresholds of the Avg response time
measure using the eG admin interface.

For the Summary descriptor, this
measure will report the total number of
healthy transactions on the target JVM.

Healthy
transactions
percentage

Indicates what
percentage of the total
number of transactions
of this pattern is healthy.

Percent

To know which are the healthy
transactions, use the detailed diagnosis of
this For the Summary
descriptor, this measure will report the
overall percentage of healthy transactions
on the target JVM.

measure.

82

Monitoring Business Transactions

transactions of this
pattern that experienced
errors during the last
measurement period.

Measurement Description Measll::?Tent Interpretation
Slow transactions |Indicates the number of|Number By default, this measure will report the
transactions of this number of transactions with a response
pattern that were slow time higher than 4000 milliseconds and
during the last lesser than 60000 milliseconds. You can
measurement period. change this default setting by modifying
the thresholds of the Avg response time
measure using the eG admin interface.
A high value for this measure is a cause
for concemn, as too many slow
transactions means that user experience
with the web application is poor. For the
Summary descriptor, this measure will
report the total number of slow transactons
on the target JVM. This is a good indicator!
of the processing power of the target JVM.
Slow transaction|indicates the average|Secs For the Summary descriptor, this
response time time taken by the slow measure will report the average response
transactions of this time of all the slow transactions on the
pattern to execute. target JVM.
Slow transactions|Indicates what|Percent Use the detailed diagnosis of this measure
percentage percentage of the total to know which precise transactions of a
number of transactions pattern are slow. You can drill down from a
of this pattem is currently slow transaction to know what is causing
slow. the slowness. For the Summary
descriptor, this measure will report the
overall percentage of slow transactions on
the monitored JVM.
Error transactions |Indicates the number of|Number A high value is a cause for concem, as too

many error transactions to a web
application can significantly damage the
user experience with that application. For
the Summary descriptor, this measure
will report the total number of error
transactons on the target JVM. This is a
good indicator of how error-prone the target
JVMis.

83

Monitoring Business Transactions

Measurement Description Measll::?Tent Interpretation
Error transactions|indicates the average Secs The value of this measure will help you
response time duration for which the discern if error transactions were also
transactions of this slow. For the Summary descriptor, this
pattern were processed measure will report the average response
before an error condition time of all error transactions on the target
was detected. JVM.
Error transactions|indicates what|Percent Use the detailed diagnosis of this measure
percentage percentage of the total to isolate the error transactions. You can
number of transactions even drill down from an error transaction in
of this pattem is the detailed diagnosis to determine the
experiencing errors. cause of the error. For the Summary
descriptor, this measure will report the
overall percentage of transactions of this
pattern on the target JVM that is currently
experiencing errors.
Stalled Indicates the number of|Number By default, this measure will report the
transactions transactions of this number of transactions with a response
pattern that were stalled time higher than 60000 milliseconds. You
during the last can change this default setting by
measurement period. modifying the thresholds of the Avg
response time measure using the eG
admin interface.
A high value is a cause for concern, as too
many stalled transactions means that user
experience with the web application is
poor. For the Summary descriptor, this
measure will report the total number of
stalled transactons on the target JVM.
Stalled Indicates the average|Secs For the Summary descriptor, this
transactions time taken by the stalled measure will report the average response
response time: transactions of this time of all stalled transactions on the
pattern to execute. target JVM.
Stalled Indicates what|Percent Use the detailed diagnosis of this measure
transactions percentage of the total to know which precise transactions of a
percentage number of transactions pattern are stalled. You can drill down from

84

Monitoring Business Transactions

statement time

execution time of the
slow SQL queries that
were run by the
transactions of this
pattern.

Measurement Description Measll::?Tent Interpretation
of this pattern is stalling. a stalled transaction to know what is
causing that transaction to stall. For the
Summary descriptor, this measure will
report the overall percentage of
transactions of this pattern on the target
JVM that is stalling.
Slow SQL|Indicates the number of|[Number For the Summary descriptor, this
statements slow SQL queries that measure will report the total number of
executed were executed by the slow SQL queries executed by all
transactions of this transactions to the target JVM.
pattern during the last
measurement period.
Slow SQL|Indicates the average[Secs If there are too many slow transactions of

a pattern, you may want to check the
value of this measure for that pattemn to
figure out if query execution is slowing
down the transactions. Use the detailed
diagnosis of the Slow transactions
measure to identify the precise slow
transaction. Then, drill down from that
slow transaction to confirm whether/not
database queries have contributed to the
slowness. Deep-diving into the queries will
reveal the slowest queries and theirimpact
on the execution time of the transaction.

3.2 Key Java Business Transactions Test

For any business-critical application, some transactions will always be considered key from the point of view
user experience and business impact. For instance, in the case of a retail banking web application, fund
transfers executed online are critical transactions that have to be tracked closely for delays / errors, as
problems in the transaction will cost both consumers and the company dearly. Using the Java Key Business
Transactions test, administrators can perform focused monitoring of such critical transactions alone.

For each transaction URL pattern configured for monitoring on a JVM node, this test reports the count of
requests for that transaction pattern, and the count and percentage of transactions of that patten that were
slow / stalling / error-prone. Detailed diagnostics provided by the test highlight the slow / stalled / error

85

Monitoring Business Transactions

transactions of a pattern, and pinpoint the precise reason why that key transaction slowed down / stalled /
encountered errors - is it because of an inefficient database query? is it because of a processing bottleneck on
the JVM node? or is it owing to slow remote service calls? This way, the test enables you to quickly detect
inconsistencies in the performance of your critical business transactions and accurately isolate its root-cause,
so that you can fix the issues well before users notice them.

Target of the Test: A BTM-enabled JVM

Agent deploying the test : An internal/remote agent

Output of the test: One set of results for each URL pattern configured for monitoring

Test parameters:

1. TEST PERIOD - How often should the test be executed
2. HOST - The host for which the test is to be configured

3. BTM PORT -Specify the port number specified as BTM_Port in the btmOther.props file on the JVM
node being monitored. If the JVM is being monitored in an agent-based manner, then the
btmOther.props file will be in the <EG_AGENT_INSTALL_DIR>\lib\bm directory.

4. URL PATTERNS - Provide a comma-separated list of PatternName:URLPattern pairs to be monitored.
The PattemName can be any name that uniquely identifies the pattern. These PatternNames will be
the descriptors of this test. For the URLPattern, you can either provide the exact URL to be monitored ,
or can provide a pattern. For instance, if you want to monitor requests to distinct and specific web
pages - say, login.jsp and payment.jsp of a web application - then you can specify the exact URL of
these web pages as your URLPATTERNS . In this case your specification will
be, Login:/web/login.jsp, Payment:/web/payment.jsp. On the other hand, if you want to monitor requests
to all payment-related web pages in a web application - say, payment.jsp, creditcardpayment.jsp,
debitcardpayment.jsp, onlinepayment.jsp, and more - and you want the metrics to be grouped under a
single head called Payment, then you can specify a pattern instead of the exact URL. In this case, your
URL PATTERNS specification will be Payment:*payment*. The leading "' in the specification signifies
any number of leading characters, while the trailing "' signifies any number of trailing characters. This
means that the specification in our example will track requests to all pages with names that contain the
word payment. Your URLPattern can also be *expror expr* or *expr1*expr2* or expri*expr2, etc.

5. KEY EXCLUDED PATTERNS - By default, this test does not track requests to the following URL
patterns:

*ttf, *.otf, *.woff, *.woff2, *.eot, *.cff, *.afm, *.Iwfn, *ffil, *.fon, *.pfm, *.pfb, *.std, *.pro, *.xsf, *jpg,

86

Monitoring Business Transactions

10.

11.

12.

*jpeg, *jpe, *jif, *jfif, *jfi, *jp2, *j2k, *.jpf, *jox, *jpom, *jxr, *.hdp, *.wdp, *.mj2, *.webp, *.gif, *.png,
*.apng, *.mng, *tiff, *.tif, *.xbm, *.bmp, *.dib, *.svg, *.svgz, *.mpg, *.mpeg, *.mpeg2, *.avi, *.wmyv,
*.mov, *.rm, *.ram, *.swf, *.flv, *.oqg, *.webm, *.mp4, *.ts, *mid, *.midi, *.rm, *.ram, *.wma,

*.wav, *.09g, *mp3, *.mp4, *.css, *js, *.ico|/egurkha*

* *

.aac,

If required, you can remove one/more patterns from this default list, so that such patterns are
monitored, or can append more patterns to this list in order to exclude them from monitoring.

METHOD EXEC CUTOFF (MS)— From the detailed diagnosis of slow/stalled/error transactions, you can
drill down and perform deep execution analysis of a particular transaction. In this drill-down, the
methods invoked by that slow/stalled/error transaction are listed in the order in which the transaction
calls the methods. By configuring a METHOD EXECUTION CUTOFF, you can make sure that methods
that have been executing for a duration greater the specified cutoff are alone listed when performing
execution analysis. For instance, if you specify 5 here, then the Execution Analysis window for a
slow/stalled/error transaction will list only those methods that have been executing for over 5
milliseconds. This way, you get to focus on only those methods that could have caused the slowness,
without being distracted by inconsequential methods. By default, the value of this parameter is set to
250 ms.

SQL EXECUTION CUTOFF (MS) — Typically, from the detailed diagnosis of a slow/stalled/error
transaction on a JVM node, you can drill down to view the SQL queries (if any) executed by that
transaction from that node and the execution time of each query. By configuring a SQL EXECUTION
CUTOFF, you can make sure that queries that have been executing for a duration greater the specified
cutoff are alone listed when performing query analysis. For instance, if you specify 5 here, then for a
slow/stalled/error transaction, the SQL Queries window will display only those queries that have been
executing for over 5 milliseconds. This way, you get to focus on only those queries that could have
contributed to the slowness. By default, the value of this parameter is set to 10 ms.

HEALTHY URL TRACE — By default, this flag is set to No. This means that eG will not collect detailed
diagnostics for those transactions that are healthy. If you want to enable the detailed diagnosis
capability for healthy transactions as well, then set this flag to Yes.

MAX HEALTHY URLS PER TEST PERIOD — This parameter is applicable only if the HEALTHY URL
TRACE flag is set to ‘Yes’. Here, specify the number of top-n transactions that should be listed in the
detailed diagnosis of the Healthy transactions measure, every time the test runs. By default, this is set
to 50, indicating that the detailed diagnosis of the Healthy transactions measure will by default list the
top-50 transactions, arranged in the descending order of their response times.

MAX SLOW URLS PER TEST PERIOD - Specify the number of top-n transactions that should be listed in
the detailed diagnosis of the Slow transactions measure, every time the test runs. By default, this is set
to 70, indicating that the detailed diagnosis of the Slow transactions measure will by default list the top-
10 transactions, arranged in the descending order of their response times.

MAX STALLED URLS PER TEST PERIOD - Specify the number of top-n transactions that should be
listed in the detailed diagnosis of the Stalled transactions measure, every time the test runs. By default,
this is set to 70, indicating that the detailed diagnosis of the Stalled transactions measure will by default
list the top-10 transactions, arranged in the descending order of their response times.

MAX ERROR URLS PER TEST PERIOD - Specify the number of top-n transactions that should be listed

87

Monitoring Business Transactions

13.

14.

15.

in the detailed diagnosis of the Error transactions measure, every time the test runs. By default, this is
set to 10, indicating that the detailed diagnosis of the Error transactions measure will by default list the
top-10 transactions, in terms of the number of errors they encountered.

ADVANCED SETTINGS — To optimize transaction performance and conserve space in the eG database,
many restraints have been applied by default on the agent’s ability to collect and report detailed
diagnostics. Depending upon how well-tuned your eG database is and the level of visibility you require
into transaction performance, you may choose to either retain these default settings or override them. If
you choose not to disturb the defaults, then set the ADVANCED SETTINGS flag to No. If you want to
modify the defaults, then set the ADVANCED SETTINGS flag to Yes.

POJO METHOD TRACING LIMIT and POJO METHOD TRACING CUTOFF TIME - These parameters will
appear only if the ADVANCED SETTINGS flag is set to ‘true’. Typically, if the MONITORING MODE of
this test is set to Profiler , then, as part of the detailed diagnostics of a transaction, eG reports the
execution time of every POJO, non-POJO, and recursive (i.e. methods that call themselves) method
call that a JVM node makes when processing that transaction. Of these, POJO method calls are the
most expensive, as they are usually large in number. To ensure that attempts made to collect detailed
measures related to POJO method calls do not impact the overall responsiveness of the monitored
transaction, eG, by default, collects and reports the execution time of only the following POJO method
calls:

o Thefirst 1000 POJO method calls made by the target JVM node for that transaction; (OR)

« The POJO method calls that were made by the target JVM node within 10 seconds from the start of
the monitored transaction on that node;

Accordingly, the POJO METHOD TRACING LIMIT is set to 1000 by default, and the POJO METHOD
TRACING CUTOFF TIME is set to 10 (seconds) by default. Of these two limits, whichever limit is
reached first will automatically be applied by eG for determining when to stop POJO tracing. In other
words, once a JVM node starts processing a transaction, the agent begins tracking the POJO method
calls made by that node for that transaction. In the process, if the agent finds that the configured tracing
limit is reached before the tracing cutoff time is reached, then the agent will stop tracking the POJO
method calls, as soon as the tracing limit is reached. On the other hand, if the tracing limit is not
reached, then the agent will continue tracking the POJO method calls until the tracing cutoff time is
reached. At the end of the cutoff time, the agent will stop tracking the POJO method calls. For
instance, if the JVM node makes 1000 POJO method calls within say, 6 seconds from when it began
processing the transaction, then the eG agent will not wait for the cutoff time of 10 seconds to be
reached; instead, it will stop tracing at the end of the thousandth POJO method call, and report the
execution time of each of the 1000 calls alone. On the other hand, if the JVM node does not make over
1000 POJO method calls till the 10 second cutoff expires, then the eG agent continues tracking the
POJO method calls till the end of 10 seconds, and reports the details of all those that were calls made
till the cutoff time.

Depending upon how many POJO calls you want to trace and how much overhead you want to impose
on the agent and on the transaction, you can increase / decrease the POJO METHOD TRACING LIMIT
and POJO METHOD TRACING CUTOFF TIME specifications.

NON-POJO METHOD TRACING LIMIT — This parameter will appear only if the ADVANCED

88

Monitoring Business Transactions

16.

17.

18.

19.

SETTINGS flag is set to ‘true’. By default, when reporting the detailed diagnosis of a transaction on a
particular JVM node, this test reports the execution time of only the first 1000 non-POJO method calls
(which includes JMS, JCO, HTTP, Java, SQL, etc.) that the target JVM node makes for that
transaction. This is why, the non-pojo method tracing limit parameter is set to 1000 by default. If you
want, you can change the tracing limit to enable the test to report the details of more or fewer non-
POJO method calls made by a JVM node. While a high value for this parameter may take you closer to
identifying the non-POJO method that could have caused the transaction to slowdown on a particular
JVM node, it may also marginally increase the overheads of the transaction and the eG agent.

RECURSIVE METHOD TRACING LIMIT — This parameter will appear only if the ADVANCED
SETTINGS flag is set to ‘true’. A recursive method is a method that calls itself. By default, when
reporting the detailed diagnosis of a transaction on a particular JVM node, this test reports the
execution time of only the first 1000 recursive method calls (which includes JMS, JCO, HTTP, Java,
SQL, etc.) that the target JVM node makes for that transaction. This is why, the RECURSIVE METHOD
TRACING LIMIT parameter is set to 1000 by default. If you want, you can change the tracing limit to
enable the test to report the details of more or fewer recursive method calls made by a JVM node. While
a high value for this parameter may take you closer to identifying the recursive method that could have
caused the transaction to slowdown on a particular JVM node, it may also marginally increase the
overheads of the transaction and the eG agent.

EXCEPTION STACKTRACE LINES —This parameter will appear only if the ADVANCED SETTINGS
flag is set to ‘true’. As part of detailed diagnostics, this test, by default, lists the first 10 stacktrace
lines of each JavaScript error/exception that it captures on the target JVM node for a specific
transaction, so as to enable easy and efficient troubleshooting. This is why, the EXCEPTION
STACKTRACE LINES parameter is set to 10 by default. If required, you can have this test display more
or fewer stacktrace lines by overriding this default setting.

INCLUDED EXCEPTIONS — This parameter will appear only if the ADVANCED SETTINGS flag is set
to ‘true’. By default, this test flags the transactions in which the following errors/exceptions are
captured, as Error transactions:

« All unhandled exceptions;
« Both handled and unhandled SQL exceptions/errors

This implies that if a programmatically-handled non-SQL exception occurs in a transaction, such a
transaction, by default, will not be counted as an Error transaction by this test.

Sometimes however, administrators may want to be alerted even if some non-SQL exceptions that
have already been handled programmatically, occur. This can be achieved by configuring a comma-
separated list of these exceptions in the INCLUDED EXCEPTIONS text box. Here, each exception you
want to include has to be defined using its fully qualified exception class name. For instance, your
INCLUDED EXCEPTIONS specification can be as follows: java.lang.NullPointerException,
java.lang.IndexOutOfBoundsException. Note that wild card characters cannot be used as part of
your specification. Once the exceptions to be included are configured, then this test will count all
transactions in which such exceptions are captured as Error transactions.

IGNORED EXCEPTIONS — This parameter will appear only if the ADVANCED SETTINGS flag is set
to ‘true’. By default, this test flags the transactions in which the following errors/exceptions are

89

Monitoring Business Transactions

20.

21.

captured, as Error transactions:

« Allunhandled exceptions;
« Both handled and unhandled SQL exceptions/errors

Sometimes however, administrators may want eG to disregard certain unhandled exceptions (or
handled SQL exceptions), as they may not pose any threat to the stability of the transaction or to the
web site/web application. To achieve this, administrators can configure a comma-separated list of such
inconsequential exceptions in the IGNORED EXCEPTIONS text box. Here, you need to configure each
exception you want to exclude using its fully qualified exception class name. For instance, your
EXCLUDED EXCEPTIONS specification can be as follows:
java.sqgl.SQLException,java.io.FileNotFoundException. Note that wild card characters cannot be
used as part of your specification. Once the exceptions to be excluded are configured, then this test
will exclude all transactions in which such exceptions are captured from its count of Error transactions.

IGNORED CHARACTERS — This parameter will appear only if the ADVANCED SETTINGS flag is
set to ‘true’. By default, eG excludes all transaction URLs that contain the ‘" character from
monitoring. If you want eG to ignore transaction URLs with any other special characters, then specify
these characters as a comma-separated list in the IGNORED CHARACTERS text box. For instance,
your specification can be: \\,&,~

MAX GROUPED URLS PER MEASURE PERIOD - This parameter will appear only if the ADVANCED
SETTINGS flag is set to ‘true’. This test groups URLs according to the MAX URL SEGMENTS
specification. These grouped URLs will be the descriptors of the test. For each grouped URL, response
time metrics will be aggregated across all transaction URLs in that group and reported.

When monitoring web sites/web applications to which the transaction volume is normally high, this test
may report metrics for hundreds of descriptors. If all these descriptors are listed in the Layers tab page
of the eG monitoring console, it will certainly clutter the display. To avoid this, by default, the test
displays metrics for a maximum of 50 descriptors —i.e., 50 grouped URLs alone — in the eG monitoring
console, during every measure period. This is why, the MAX GROUPED URLS PER MEASURE PERIOD
parameter is set to 50 by default.

To determine which 50 grouped URLs should be displayed in the eG monitoring console, the eG BTM
follows the below-mentioned logic:

« Top priority is reserved for URL groups with error transactions. This means that eG BTM first scans
URL groups for error transactions. If error transactions are found in 50 URL groups, then eG BTM
computes the aggregated response time of each of the 50 groups, sorts the error groups in the
descending order of their response time, and displays all these 50 groups alone as the descriptors of
this test, in the sorted order.

« On the other hand, if error transactions are found in only one / a few URL groups — say, only 20 URL
groups — then, eG BTM will first arrange these 20 grouped URLs in the descending order of their
response time. It will then compute the aggregated response time of the transactions in each of the
other groups (i.e., the error-free groups) that were auto-discovered during the same measure period.
These other groups are then arranged in the descending order of the aggregated response time of
their transactions. Once this is done, eG BTM will then pick the top-30 grouped URLs from this
sorted list.

90

Monitoring Business Transactions

22.

23.

24

25.

In this case, when displaying the descriptors of this test in the Layers tab page, the 20 error groups
are first displayed (in the descending order of their response time), followed by the 30 ‘error-free’
groups (also in the descending order of their response time).

At any given point in time, you can increase/decrease the maximum number of descriptors this test
should support by modifying the value of the MAX GROUPED URLS PER MEASURE PERIOD
parameter.

MAX SQL QUERIES PER TRANSACTION — This parameter will appear only if the ADVANCED
SETTINGS flag is set to ‘true’. Typically, from the detailed diagnosis of a slow/stalled/error transaction
on a JVM node, you can drill down to view the SQL queries (if any) executed by that transaction from
that node and the execution time of each query. By default, eG picks the first 500 SQL queries
executed by the transaction, compares the execution time of each query with the SQL EXECUTION
CUTOFF configured for this test, and displays only those queries with an execution time that is higher
than the configured cutoff. This is why, the MAX SQL QUERIES PER TRANSACTION parameter is set to
500 by default.

To improve agent performance, you may want the SQL EXECUTION CUTOFF to be compared with the
execution time of a less number of queries — say, 200 queries. Similary, to increase the probability of
capturing more number of long-running queries, you may want the sql execution cutoff to be compared
with the execution time of a large number of queries — say, 1000 queries. For this, you just need to
modify the MAX SQL QUERIES PER TRANSACTION specification to suit your purpose.

TIMEOUT- By default, the eG agent will wait for 1000 milliseconds for a response from the eG
Application Server agent. If no response is received, then the test will timeout. You can change this
timeout value, if required.

DD FREQUENCY — Refers to the frequency with which detailed diagnosis measures are to be generated
for this test. The default is 1:1. This indicates that, by default, detailed measures will be generated
every time this test runs, and also every time the test detects a problem. You can modify this
frequency, if you so desire. Also, if you intend to disable the detailed diagnosis capability for this test,
you can do so by specifying none against DD FREQUENCY.

DETAILED DIAGNOSIS — To make diagnosis more efficient and accurate, the eG Enterprise suite
embeds an optional detailed diagnostic capability. With this capability, the eG agents can be configured
to run detailed, more elaborate tests as and when specific problems are detected. To enable the
detailed diagnosis capability of this test for a particular server, choose the On option. To disable the
capability, click on the Off option.

The option to selectively enable/disable the detailed diagnosis capability will be available only if the
following conditions are fulfilled:

« The eG manager license should allow the detailed diagnosis capability

« Both the normal and abnormalfrequencies configured for the detailed diagnosis measures should not
be 0.

Measures reported by the test:

91

Monitoring Business Transactions

response time

time taken by the slow
transactions of this
pattern to execute.

Measurement Description Meas;:::nent Interpretation

All transactions |Indicates the total|Number By comparing the value of this measure
number of requests across transaction patterns, you can
received for transactions identify the most popular transaction
of this pattern during the patterns. Using the detailed diagnosis of
last measurement this measure, you can then figure out
period. which specific transactions of that pattern

are most requested.

Avg response time|Indicates the average|Secs Compare the value of this measure across
time taken by the patterns to isolate the type of transactions
transactions of this that were taking too long to execute. You
pattern to complete can then use the detailed diagnosis of the
execution. All transactions measure of that group to

know how much time each transaction in
that group took to execute. This will lead
you to the slowest transaction.

Healthy Indicates the number of|Number

transactions healthy transactions of
this pattern.

Healthy Indicates what|Percent To know which are the healthy

transactions percentage of the total transactions, use the detailed diagnosis of

percentage number of transactions this measure.
of this pattern is healthy.

Slow transactions |Indicates the number ofNumber This measure will report the number of
transactions of this transactions with a response time higher
pattern that were slow than the configured SLOW TRANSACTION
during the last CUTOFF (MS). A high value is a cause for
measurement period. concern, as too many slow transactions

means that user experience with the web
application is poor.

Slow transaction|indicates the average|Secs

92

Monitoring Business Transactions

transactions
response time:

time taken by the stalled
transactions of this
pattern to execute.

Measurement Description Measllj::Tent Interpretation

Slow transactions|Indicates what|Percent Use the detailed diagnosis of this measure

percentage percentage of the total to know which precise transactions of a
number of transactions pattern are slow. You can drill down from a
of this pattern is currently slow transaction to know what is causing
slow. the slowness.

Error transactions |Indicates the number of|Number A high value is a cause for concern, as too
transactions of this many error transactions to a web
pattern that experienced application can significantly damage the
errors during the last user experience with that application.
measurement period.

Error transactions|indicates the average|Secs The value of this measure will help you

response time duration for which the discemn if error transactions were also
transactions of this slow.
pattern were processed
before an error condition
was detected.

Error transactions|Indicates what|Percent Use the detailed diagnosis of this measure

percentage percentage of the total to isolate the error transactions. You can
number of transactions even drill down from an error transaction in
of this pattem is the detailed diagnosis to determine the
experiencing errors. cause of the error.

Stalled Indicates the number of|Number This measure will report the number of

transactions transactions of this transactions with a response time higher
pattern that were stalled than the configured STALLED
during the last TRANSACTION CUTOFF (MS). A high
measurement period. value is a cause for concern, as too many

stalled transactions means that user
experience with the web application is
poor.

Stalled Indicates the average|Secs

93

Monitoring Business Transactions

statement time

execution time of the
slow SQL queries that
were run by the
transactions of this
pattern.

Measurement Description Measllj::Tent Interpretation
Stalled Indicates what|Percent Use the detailed diagnosis of this measure
transactions percentage of the total to know which precise transactions of a
percentage number of transactions pattern are stalled. You can drill down from
of this pattern is stalling. a stalled transaction to know what is
causing that transaction to stall.
Slow SQL|Indicates the number of|Number
statements slow SQL queries that
executed were executed by the
transactions of this
pattern during the last
measurement period.
Slow SQL|Indicates the average|Secs If there are too many slow transactions of

a pattern, you may want to check the
value of this measure for that pattern to
figure out if query execution is slowing
down the transactions. Use the detailed
diagnosis of the Slow transactions
measure to identify the precise slow
transaction. Then, drill down from that
slow transaction to confirm whether/not
database queries have contributed to the
slowness. Deep-diving into the queries
will reveal the slowest queries and their
impact on the execution time of the
transaction.

94

Monitoring Business Transactions

3.3 Detailed Diagnostics

By reporting detailed diagnostics on transaction responsiveness and errors, eG Enterprise not only points you

to the slow/stalled/error transaction URLSs, but also reveals what could be causing the slowness/errors.

Figure 3.2 reveals detailed diagnosis of the Slow transactions percentage measure of the Java Business

Transactions test.

Slow Transaction Snapshots for Shipping-Enginel

TRANSACTION
USER REQUEST TIME URL

EXPERIENCE
Nov 04, 2016 18:27:43

E Slow G Maow 04, 2016 18:24:50 15T JEasykar
Now 04, 2016 18:03:43

E Slow -::'-\ Nov 04, 2016 18:00:16 IST JEasykar
MNowv 04, 2016 18:24:54

E Slow QG Maow 04, 2016 18:22:34 15T JEasykar
Now 04, 2016 17:51:08

E Slow -::'-\ MNov 04, 2016 17:50:16 IST JEasykar

E Slow QG Maow 04, 2016 17:48:03 15T JEasykar
Now 04, 2016 18:33:31

E Slow Q Nov 04, 2016 18:31:47 IST JEasykar

Page 1 of 6

rt/PaymentPage. jsp

't/ PaymentPage.jsp

rt/PaymentPage. jsp

't/ PaymentPage.jsp

rt/PaymentPage. jsp

't/ PaymentPage.jsp

TOTAL
RESPOMSE
TIME {ms)

25094

11547

9616

8619

7946

8390

REMOTE HOST

localhost

localhost

localhost

localhost

localhost

localhost

QUERY STRING = THREAD INFO

- http-nio-8181-exec-6[...

= http-nio-8181-exec-7[...

- http-nio-8181-exec-6[...

= http-nio-8181-exec-2[..

- http-nio-8181-exec-7[...

= http-nio-8181-exec-9[..

Displaying 1 - 10 of 54

Figure 3.2: Detailed diagnosis of the Slow transactions percentage measure of the Java Business Transactions test

The detailed diagnosis reveals the individual transaction URLs in the grouped URL that users requested for,

the total response time of each transaction, the client (remote host) from which each transaction request was

received, the thread executing the transaction, and the query string of the transaction URL. The per-

transaction response time displayed in Figure 3.2 includes the following:

« The total time for which the transaction request was processed by the target JVM and by other
BTM-enabled JVMs in the transaction path thereafter, until the time the response for that

transaction request was sent out by the target JVM,;

« The time taken by external calls (SQL query / HTTP / JMX / Java / JMS / SAP JCO / async) to
other JVMs or backends in the transaction path;

Additionally, the overall experience of the users with each transaction — whether it is slow, stalled, or error - is
also revealed in the TRANSACTION USER EXPERIENCE column. The per-transaction statistics are also
sorted in the descending order of the transaction response time, starting with the slowest transaction and
ending with the healthiest one. In the event that the Avg response time of a grouped URL registers an

abnormally high value, you can use these detailed metrics to quickly and accurately identify the exact

transaction in the group that is significantly contributing to the poor user experience with the group.

Similar diagnostics are also available for the Slow transaction percentage, Stalled transaction percentage,
and Error transaction percentage measures of the Java Business Transactions test. With the help of these

95

Monitoring Business Transactions

detailed measures, you will be able to quickly and accurately identify the slow, stalled, and error transactions
in a grouped URL.

Once a slow/stalled transaction is revealed, the next question is what is causing the transaction to slowdown.
Transaction responsiveness can be impacted by any of the following factors:

« An inefficient database query run by the target JVM node;
« In a multi-dVM environment, a time-consuming POJO / non-POJO method called by any JVM node;
« Apoorly responsiveness remote service call made by the target JVM node;

With the help of illustrated examples, the links below describe how drill-downs from the detailed diagnostics
enable accurate isolation of the root-cause of a transaction slowdown / errors in a transaction.

Detailed Diagnostics Revealing that an Inefficient Database Query is the Reason for a Slow Transaction

Detailed Diagnostics Revealing that a Slow JVM Node is Causing Transactions to Slowdown

Detailed Diagnostics Revealing the Root-cause of an Error Transaction

Detailed Diagnostics Revealing that a Remote Service Call is the Reason Why a Transaction Slowed Down

3.3.1 Detailed Diagnostics Revealing that an Inefficient Database
Query is the Reason for a Slow Transaction

Let us consider the example of the Easykart web application, which enables users to quickly shop for
products. Say that this web application has been deployed on the Apache Tomcat server, Shipping-
Engine1:8181. Users of Easykart complained that every time they tried to browse the payment page on the
Easykart web site, the response was very poor. Using eG’s Java Business Transactions test of the Apache
Tomcat server, Shipping-Engine1:8181, you can promptly capture this anomaly! As you can see in Figure 1
below, the Java Business Transactions test has accurately captured and reported that the Slow transactions
percentage for the /Easykart/PaymentPage.jsp transaction is 100%. This means that 100% of the requests
for the Easykart/PaymentPage.jsp transaction were serviced slowly (see Figure 1)!

% Shipping-Enginel:8181

Java Business Transactions - (Easykart/PaymentPage.jsp 1 @ B
@ Application Transactions P —
~ () Java Business Transactions = o Al transactions (Numbar) 3 | ¥
X [Easysan/ShigpingPage. jso Avg respanse time (Msecs) 6859 A4 &
[EasywarPaymentPage jsp +' Healthy transactions {Number a | &
[EasykarPraductinfo.jsp o Hesithy transactions pescentage &%) 0 4 |
Summary Slow STAtistics
+ JEasykart/validateProduct.jip Slow transactions (Numnber) y [
»' Slow transactions résponse time (Msecs) G859 b
Slowd tran3actions percentags (% 100 . I
Error MatsHos
»' [Error transactions {Mumiber) a [S3
» Error Irandactions responie time (Miecs) Q b &
o Error ransactions percantage o6 o [T
Sralled Statistics
o Stalled tranzactions (Numbern a b &
Stalled transactions response time {Msecs)] |
W Stalled transactions percentage (%1 (1] b =
S0QL Sransncy

J_Eloey SO craramanre sysryged (Wymbar 0 Lo &

96

Monitoring Business Transac

tions

Figure 3.3: The Layers tab page indicating that all requests for /Easykart/PaymentPage.jsp were slow

To know which request received the slowest response, click the DIAGNOSIS icon against the Slow

transactions percentage measure in 3.3.1. Figure 3.4 will then appear listing all the transaction requests that

were slow, the time at which each request was sent, the total response time of every request, the client from

which the request was received, the query string of the transaction URL, and the thread executing the

request.

Slow Transaction Snapshots for Shipping-Enginel

TRANSACTION TOTAL
USER REQUEST TIME URL RESPONSE
EXPERIENCE TIME (ms}
Nov 04, 2016 18:27:43

E Slow Q Nowv 04, 2016 18:24:50 I5T JEasykart/PaymentPage jsp 25094
Nov 04, 2016 18:03:43

E Slow Q Nov 04, 2016 18:00:16 15T JEasykart/PaymentPage.jsp 11547
Nov 04, 2016 18:24:54

= slow G, Mov 04, 2016 18:22:34 15T JEasykart/PaymentPage jsp 9616
Nowv 04, 2016 17:51:08

E Slow Q, Nowv 04, 2016 17:50:16 IST /Easykart/PaymentPage.jsp 8619

E Slow Q Nowv 04, 2016 17:48:03 IST JEasykart/PaymentPage jsp 7946
Nowv 04, 2016 18:33:31

E Slow Q Mov 04, 2016 18:31:47 15T JEasykart/PaymentPage jsp 8390

Page 1 of 6

REMOTE HOST

localhost

localhost

localhost

localhost

localhost

localhost

QUERY STRING | THREAD INFO

- http-nio-8181-exec-6[...

= http-nio-8181-exec-7[...

- http-nio-§181-exec-6[...

= http-nio-8181-exec-2[...

- http-nio-8181-exec-7[...

= http-nio-8181-exec-9[..

Displaying 1 - 10 of 54

Figure 3.4: Detailed Diagnosis of the Slow transactions percentage measure

Since the requests are arranged in the descending order of their response time, a quick look at the detailed

diagnostics will lead you to the precise request that is the slowest. But, why is response to this request slow?

To answer this question, click the ‘magnifying glass’ icon against Slow in the TRANSACTION USER

EXPERIENCE column of the slowest request (i.e., the topmost request in Figure 3.4).

Figure 3.5 will then appear revealing the cross-application flow of the slow transaction. This flow diagram

clearly reveals the following:

« The JVMs and backends through which the transaction travelled;

« The time for which the transaction request was processed at each BTM-enabled JVM; note that this time
will not be computed for JVMs that are in the transaction path, but are not BTM-enabled and

those that are BTM-enabled but are not managed by eG;

« The time consumed by external calls made by the transaction and the number of times each type of call

was made;

97

Monitoring Business Transactions

TRANSACTION SNAPSHOT
User Experience -~ § siow

Execution Time 11547 ms

Slow Segment Database Quiry exelution on
balraj 142 0Oct_12 took 5240

ms.
Click here toview tier-
wise response time h |:|

o Wi Serviae
430 s

Ramzza Call
bitpa: { masizrrardmerchantaite 43

breakup
W MTTF Call ‘&
o dmen 4 e B
24 me faryac) Remese Cail
[] g g deiverrimereaprseries4]
E e Tamann
Shipping-Engia 8151
w s
e o]
ActivaNi
Dederd -
e A Ducabaze Quene: (2} » -
§240 ma —
Wl 2753 ma —
26 ma lnayez) Wigraaal SOL

Curtomars-0E

W HTTF Cail

4

———— Zoomin | Zoom out slider e o v i ==
FraresTn.

Emml Alnrt

Y&

Figure 3.5: Cross-application transaction flow

Cross Application Transaction Flow for [Easykart/PaymentPage. jsp received on Nov 04, 2016 18:00:16 IST o = E

98

Monitoring Business Transactions

Using conventional color codes and intuitive icons, the transaction flow chart precisely pinpoints where the
transaction slowed down. In the case of Figure 3.5 above, from the color-coding it is clear that the Database
Query executed by the Apache Tomcat server — Address-Validation-Service1:7070 - is taking a long time for
execution. The question now is which query is this. To determine that, click on Database Query in Figure 3.5.

Drilling down from Database Query in Figure 3.5 automatically opens the list of SQL Queries executed by
the slow transaction in question (see Figure 3.6). The execution time of each query and what percentage of
the total response time of the transaction each query is consuming will be displayed here. From Figure 3.6, it
is evident that a SELECT DISTINCT specials. . . query is taking over 230000 milliseconds for execution —
this is apparently 98.02% of the total response time of the target transaction. This time-consuming query is
what is causing the transaction to slow down. To view the complete query, click on that query in the SQL
Queries list of Figure 3.6. The detailed query will then be displayed in the Query section of Figure 3.6.

£ Summary SQL Queries 1 slow 5QL Queries
Execution Analysis

_?\El::“(QUERY DETAILS :T;EUTION % TIME ERROR DATABASE
@ Hot Spots {ms)

SELECT SELECT DISTINCT specials.special... 23242 08.02% = 192.168.10.1...
= 0L Queries

[E¥ Error Details

[Ef Remote Call Details

Query

SELECT DISTINCT specials.specials_new_preducts_price, specials.status, specials.expires_date, specials.starts_date,
products.preducts_date_added, products.products_date_available, products_products_date_expiry,

products.preduc products.products_image, products.products_image2, products.products_image3,
products.preducts_image4, preducts_preduct_image_dir, products. product_uuid, preducts.products_model,
products.preducts_price, products.products_price_1, products. preducts_price_2, products. products_price_3,
products.products_ordered, products.products_quantity, products.products_status, products.products_invisible,
products.preduc ;eight, products preduct_length, products product_width, products.product_depth, products rating,
products.number_reviews, products.products_tax_class_id, products.products_sku, products products_type,
products.preducts_file_path, products.payment_schedule_id, preducts.products_content_type, products.customl,
products.custom2, products.custom3, products.custom4, products.custems5, products.custemé, products.custom?,
products.custom8, products.custom9, products.custom10, products.custom1Dec, products.custom2Dec,

nrodurts customilng nroducts custom?Int_nroducts store id _oroducts max_downlnad davs

Figure 3.6: Analyzing the slow query
This way, using a short sequence of mouse clicks, you have zeroed-in on the source of the transaction
slowness.

The TRANSACTION SNAPSHOT section in Figure 3.5 leads you to the same root-cause, without
requiring any clicks! The details provided by this section are as follows:

« User Experience: The user experience with the BrowseProducts transaction; in our example, this is Slow
« Execution Time: The total response time of the BrowseProducts transaction;

« Slow Segment: Where exactly the BrowseProducts transaction slowed down;

99

Monitoring Business Transactions

From the Slow Segment display, it is evident that a database query executed by the BrowseProducts.jsp
transaction on the Customer Orders database took over 23000 millisecs for execution, thereby slowing down
the entire transaction! This corroborates our findings from the cross-application transaction flow and the
subsequent query analysis.

Now, click on the down-arrow button at the bottom tip of the TRANSACTION SNAPSHOT section (as
indicated by Figure 3.5). Doing so will reveal a tier-wise breakup of the transaction response time (see Figure
3.7). This way, you can quickly compare response time across tiers, and accurately isolate where the
bottleneck lies —in this case, it is in the database queries.

TRANSACTION SNAPSHOT - == Click toclose

the
User Experience = = Slow transaction
snapshot
Execution Time 11547 ms
Slow Segment Database Query execution on
balraj_142_Oct_12 took 5240
- C'I"ln::?(oclose

the tierwise
Tier Execution Time Breakup ‘breakup

Java Database Queries Remote Calls

2767 ms 5240 ms 3540 ms

Figure 3.7: Tier-wise response time breakup

To close the tier-wise breakup, click on the up arrow button indicated by Figure 3.7.

100

Monitoring Business Transactions

You can even close the transaction snapshot pop-up if you want to by clicking on the =/ button alongside the
title TRANSACTION SNAPSHOT (as indicated by Figure 3.7).

Let us now revisit the cross-application flow diagram of the PaymentPage.jsp transaction. You can use the
top-down slider at the bottom, left corner of the flow diagram (as indicated by Figure 3.5) to zoom your
diagram in and out.

Moreover, by default, the time spent by the transaction at every point cut is reported in milliseconds in the flow
diagram. You can reconfigure the flow diagram to express the time spent as a percentage of total transaction
response time instead. For this, first click the button at the right, top corner of the flow diagram. The options

depicted by 3.3.1 will then appear.
=0

More Options

Time spent in ms

Time spent in %

All
Component type

Component name

Figure 3.8: Expressing the time spent at every point cut as a percentage of total transaction response time

101

Monitoring Business Transactions

Uncheck the Time spent in ms check box in 3.3.1 and select the Time spent in % check box to make sure
that the response time at every point cut is displayed as a percentage of total transaction response time. The
percentage will enable you to better judge where the transaction spent maximum time.

You can also choose the Component type or Component name options in 3.3.1 to have the component
type only or the component name only (as the case may be) displayed for each of the nodes in the cross-
application transaction flow. By default, both component type and name will be displayed for each node.

Let us now explore the Summary section of the call drill down. For that, click the Summary option in the left
panel of Figure 3.6. Figure 3.9 will appear.

Call Drill Down for /Easykart/MakePayment jsp on Address-Validation-5ervice1: 7878

= Summary Summary

| cution Anaky .
Ei| Ewecution Anakysis Tatal Pracessing time © 7993 ms

5} HotSpors URL : /Easykart/MakePaymentjsp

Slenw SOL Queries omponent - Tomcal (Address-Validation-Service 1:7A7E)

=
Breakup of Processing Time

EX Ervor Details
Java (this mode Remore Calls (daraoase, others)

2753 ms

Remate Call Derails

TRANSACTION DETAILS

LIAL 'Easykart/MakePayment.jsp

Request Time Nov 04, 2016 1E:00:20 15T

Business Transacsion 'Ea;ylcall.- PaymentPagejsp

User Experience {Overall) E Slow

Java Processing S1anus on Addres « Healthy

Tatal Processing Tims 70593 ms (Transaction was slower than the slow threshald of 4000 ms)
Camponent Address-Validation-Servicel:7878

Rermots Host 152.168.9.1593

Cuery String -
Lession 1D

Thresd Mame L
Thitrehine TR 7R —awar=?

Figure 3.9: A summary of the performance of the JVM node, Address-Validation-Service1:7878

The Summary section provides a quick summary of the performance of the monitored transaction,
Easykart/PaymentPage.jsp, on the JVM node that executed the slow database query — i.e., the Apache
Tomcat server, Address-Validation-Service1:7878. .

From the Summary, you can infer that the payment transaction was processed for a total of 7993
milliseconds on Address-Validation-Service1:7878. If you take a look at the transaction topology now (see
Figure 3.10), you will be able to understand that this processing time is the sum of the following:

o The time for which the transaction was processed internally by the Address-Validation-
Service1:7878 server — 2753 ms

« The time taken by Address-Validation-Service1:7878 to execute a database query for the
transaction and retrieve results — 5240 ms

102

Monitoring Business Transactions

o The time taken by Address-Validation-Service1:7878 to make a JMS call to a messaging server
and pull data from the message queue Email Alert —0 ms

Cross Application Transaction Flow for /Easykart/PaymentPage. jsp received on Nov 04, 2016 18:00:16 IST - nl

TRANSACTION SNAPSHOT o

User Experience
Execution Time

Slow Segment

T slow
11547 ms

Database Query execution on

bralraj_142_Oct_12 took 5240
ms

w* WTTE Cal

Figure 3.10: How the total processing time of the transaction on Address-Validation-Service1:7878 is computed

The Breakup of Processing Time section in Figure 3.9 clearly indicates how the Total Processing time is
computed. From this section, you can also glean where the slowdown originated — within the JVM node? Or
when making external calls from the JVM node? In the case of our example, the problem is with the remote
calls.

Next, take a look at the URL displayed in the Summary section. As you can see, while the Business
Transaction continues to be PaymentPage.jsp, the URL is Easykart/MakePayment.jsp. When tracing a
transaction, if an HTTP call is made by a JVM node to another, then eG BTM not only discovers the type of
call made, but also discovers the URL that was called.

This means that in the case of our example, when the user accessed the Easykart/PaymentPage.jsp on the
Shipping- Engine1:8181 server, the PaymentPage made an HTTP call to the Address- Validation-
Service1:7878 server and hit the URL Easykart/MakePayment.jsp. eG accurately discovered the exact URL
that the PaymentPage transaction accessed on the Address-Validation-Service1:7878 server and displayed
that URL —i.e., Easykart/MakePayment.jsp — against URL in Figure 3.9. Additionally, the Summary section
also reports the Query String of the URL, the Session ID of the session in which the transaction is
processed on the Address-Validation-Service1:7878 server, and Thread Name of the thread that processed
the transaction.

The Summary section also differentiates between the overall User Experience of a transaction and the Java
Processing Status of that transaction on a particular JVM node. In the case of our example, the Summary
section clearly reveals that the User Experience of the tranaction is Slow. At the same time, eG has also

103

Monitoring Business Transactions

detected that the transaction slowdown is not owing to the OrderProcessing:80 server —i.e.,

the slowness did

not occur because of a processing bottleneck on the Address-Validation-Service1:7878 server. This is why,
eG maintains that the Java Processing Status of the Address-Validation-Service1:7878 server is

Healthy.

3.3.2 Detailed Diagnostics Revealing that a Slow JVM Node is Causing

Transactions to Slowdown

Let us consider the example of a web application, where the following transactions are slow.

Slow Transaction Snapshots for Shipping-Engine 1

TRANSACTION TOTAL
USER REQUEST TIME LRL RESPONSE TiMg REMOTE HOST
EXPERIENCE (rms)
Mo 04, 2016 19:03:24
B slow G MNov 04, 2016 15:00:48 BT JEasy%art/Login,jsp 9259 locamost
= Slow G Mov 04, 2016 15:02:16 BT jEasykart/Login jsp 5728 localhost
E Slow O MNeow 04, 2016 19:02:52 5T iEasyikart/Login. jsp LE10 localhost
E Slow 3 Mow 04, 2016 19:01:23 BT [Easykart/Login.jsp 5601 lacalhast

QUERY STRING ~ THREAD INFQ

hup=nio=8 181 -exec- LO[53]
hitp=nio=S181-exec-2[33]
hitp-nio-8181-exec-T[44)

hitp-nio-8181-exec-T[45]

Figure 3.11: Detailed diagnosis of the Avg response time measure

Let us focus on the slow /Easykart/Login.jsp in Figure 3.11. To zoom into the transaction, click on it. The flow

of the Login.jsp transaction will then be displayed as depicted by Figure 3.12.

Cross Application Transaction Flow for /Easykart/Login jsp received on Mov 04, 2016 19:05:57 IST

TRAMNSACTION SNAPSHOT
User Experience = T Siow
Execution Time

5627 ms

Slow Segment Muitiple SLOW calls found

The Tomcat server where
transaction processing slowed

EE EI

down
.,
W et Sarvice
424 ma r o
W o
Tme Ramone Call
. hitga:/ e tercard marchastasoe S
£y - & ==
- -
T usar Tament Actell)
Shippeag-Eegired b1 [reaid dlen
PRt w* HTTP Cal
ma
" —
—
Mhcroactt Y04
Custamen-DE

Figure 3.12: The cross-application flow of the Login.jsp transaction

104

Monitoring Business Transactions

From the transaction flow, it is evident that the transaction slowed down on the Tomcat server, Address-
Validation-Service1:7878. The question now is what type of processing on the Tomcat server delayed the
transaction in question. A closer look at the Tomcat server icon in Figure 3.12 will answer this question as
welll As indicated by Figure 3.12, the Address-Validation-Service1:7878 server processed Java methods
synchronously for 5193 milliseconds and asynchronously for over 5007 milliseconds. Comparing the two
execution times points the needle of suspicion towards the synchronous Java calls made by the Tomcat
server. If so, which exact Java method is slowing down the transaction? To identify the same, let us zoom
into the Tomcat server by clicking on it in Figure 3.12. An intermediate window depicted by Figure 3.13 will

then appear.

Cross Application Transaction Flow for /Easykart/Login jsp received on Nov 04, 2016 19:05:57 15T - E

TRANSACTION SMAPSHOT
User Experience T Siow

Execution Time 5627 ms

Slow Segment Multiple SLOW calls found
X
ol i Select a call to drill down
wf Juwm)
Fo ol Executi
@) q cal Salf on
L] T Source Srart Time Time
_— Ype) Time
T wer Tameat (ms)
7 rgin 1 .
v = | anina=Enoin 04 7 =1 %y —
3 -4 Synch Shipping=Engine 1 Mov 04, Z016 1% 2193 5196
B Awmc This Mode Nov 04, 2016 19 5006 5006
o Ammc This Mode Mow 04, 2616 15 i 1

Figure 3.13: An intermediate modular window

This intermediate window will appear only under the following circumstances:

« If a node receives and processes multiple synchronous / asynchronous requests from one/more
external sources; and/or

« If one/more asynchronous threads are invoked by a node in response to requests to it;

Typically, from this window, you will be able to quickly determine the number of synchronous and
asynchronous calls that a particular JVM node processed. In the case of our example, we can clearly infer
from the intermediate window that the Address- Validation- Service1:7878 server executed a single
synchronous call and two asynchronous calls.

For each synchronous and asynchronous call, this window will also display the self execution time and total
execution time of that call. Self execution time is the time it took for the synchronous/asynchronous call to
perform Java processing alone. Total execution time is the time taken by the synchronous/asynchronous call

105

Monitoring Business Transactions

to perform both Java and non-Java (eg., HTTP, Database, etc.) processing. By comparing the self and total
execution times across calls, you will be able to accurately identify the exact call that took too long to
execute, the call type, and whether such a call was slow in processing Java or non-Java. Accordingly, we can
clearly deduce from the intermediate window of Figure 3.13 that the synchronous calls made by the Address-
Validation-Service1:7878 server in our example performed Java processing for a much longer time than
desired. To be able to precisely identify the exact Java method that caused the delay, click on the
synchronous call in Figure 3.13.

Figure 3.14 will then appear.

Call Drill Down for JEasykart/BrowseProducts jsp on Address-Validation-Service 1: 7878

Summary Execution Analysis
= : for the request [Easykart/BrowseProducts, jsp on Address-Validation-5ervice 1: 7878 (Tomcar) at Nov 04
[E Execution Analysis 9 L I=p
@:l Hot 5pots
= S0 Cueries
® a Azync
B Error Details
’ i Catabase Query
[& Remote Call Details
_
RECUEST SELF TOTAL
CALL TYPE PROCESSING EXECUTION = EXECUTION = TRACE DETAILS
H TIME (ms) TIME {ms)
ava | 2638 % | LO08 5196 = W OrgLApache |5 Browse Products 5. .| spoenvic
Java 60 50 4, orgapache jip BrowseProducts_jsp. sleephe
ava m a &3 ' wr Org.apache, |sp BrowseProducts_jsp.peiCo
lava | 1235% | 65 67 B - netssurceforge jids jdbe Driver conn
3&:&.5&!&0&‘:"\ m 2 2 ! nat s owrcefonge, jTds jdb |td s5tatem
Java BEEE] 61 A, w org.apathe jip BrowseProducts_jup getle
Java 1.15% 8] 60 4, org.apache jsp.BrowssProducts_|sp. sheeg
", [a) i [FE. 1 1 B nersounceforge jds jibe |ndsSratement
= S0 queries execubsd withes SOL execution ©utoff bre dubbed under |ava

Figure 3.14: The call graph of the synchronous call

Figure 3.14 provides a detailed Execution Analysis of the synchronous call. As part of this analysis, a pie
chart is presented that quickly reveals the percentage of time the Tomcat server in our example spent
processing the server's Java code and making external JMS / SAP JCO / SQL query calls. The table below
the pie chart in Figure 3.14 lists the exact methods that performed Java processing or made the remote calls.
A quick look at this table reveals that the Java method, org.apache.jsp.BrowseProducts_jsp_jspService...,
invoked a series of child methods and external calls, which together took 5196 milliseconds to execute. The
method itself took over 5000 milliseconds to execute (self execution time)! This means that the
'org.apache.jsp.BrowseProducts_jsp_jspService...' is the method that is delaying the BrowseProducts.jsp
transaction.

This way, eGBTMenables you to diagnose the root-cause of slowness in your synchronous and
asynchronous calls using just a few mouse clicks!

106

Monitoring Business Transactions

3.3.3 Detailed Diagnostics Revealing the Root- cause of an Error
Transaction

The detailed diagnosis of the Error transactions measure reveals the complete URLs of the error transactions
of a particular business transaction pattern. The total response time of each error transaction and the time at
wihich every such transaction was requested can be ascertained from the detailed diagnosis. To zoom into
the nature of the error and where it occurred, click on the ‘magnifying glass’ icon against the corresponding

‘Error’ icon in the TRANSACTION USER EXPERIENCE column of Figure 3.15.

Error Transaction Snapshots for Shipping-Enginel

o Error O

o Error O

s Error G
e Error G

o Error O

o Error O

REQUEST TIME

Mow 04, 2016 18:44:04 BT

Mo 04, 2016 18:36.37 BT

Mov 04, 2016 18:13:22 ET

Mowv 04, 2016 18:15:26 BT

Mov 04, 2016 18:12:19 BT

Mo 04, 2016 18:19:32 BT

fEasykart/Produdtinfo j5p

FEnsykart [Productinfo. jsp

FEasykart/Proguciinifo j5p

FEasykart/Productinfo jsp

fEasykart/Produdtinfo j5p

FEnsykart [Productinfo. jsp

TIME (g}

251084

243005

2775

1769

ZB58

1917

REMOTE HOST =~ CQUERY STRING = THREAD INFOD

localhost

localhost

localhost

localhost

localhost

localhost

hp-nio-318 1-exec-L0[53]

http-nic-8181-=wec-3[41)

hp=nio=-3181-exec-3[41]

hitp-nio-§181-exec-5[41]

hrp-nio-318 1-exec-3[50]

http-nio-8181-=wec-4[40)

Page |

T]ofs | » » [

Displaying 1 - 10 of 50

Figure 3.15: The detailed diagnosis of the Error transactions measure

3.3.3 will then appear, which will chart the entire path of the error transaction end-to-end. Using conventional

color-codes, this visual representation will accurately pinpoint where the error has occurred.

107

Monitoring Business Transactions

Cross Application Transaction Flow for /Easykart/Productinfo_jsp received on Mov 04, 2016 18:15:26 IST o

él

TRANSACTIOM SMAPSHOT
User Experience w, Ermor

Execution Time 1769 ms

Error Segment ICException on Shipping-
Enginel-81E1
o Java
1002 ms
W' HTTP Call ¥
. 6 ms i
i Java

10 ms Tomcat

. Address-Validation-Sernvice: 7878
* *
S\ g
& User Tomcat
Shipping-Engine :8181
W Web Service N

31 ms

Remaote Call
houps: //mastercard. merchanisine:443

Figure 3.16: The error transaction path revealing where the error has occurred
In the example of 3.3.3 above, the error seems to have occurred on the Shipping-Engine1:8181 (Apache
Tomcat) server being monitored. To know what the error is, click on the Shipping-Engine1:8181 server in
3.3.3.
Figure 3.17 that appears next opens an Error Details section, which displays the complete details of the

error.

108

Monitoring Business Transactions

Call Drill Do for F.r-.'_..'k.||1 I ProsdscrDetails JSp On Address-Validanon-Service1: 7878

IE Summary Error Details

[E] Execution Anatysis
javalangindexOuOfBoundsException: Index: 4, Size: 3

(& Horspars
= Slow 50U Queries at java wtil Arraylist rangeCheck{Unknown Source)
- at java wiil ArrayList get{Unkmnown Lource]
[E¥ Errar Details a5 org apache, |sp. ProductDetails 5. JspserionProductDealls Jspjavac132)

Ar g Apache jasper runtime Hrplspiase serviceHuplspBase java 70)

AR jEvax servist hip. HiepSerdet serviceHIEpServier java: 72 2)

at org.apache. jasper serviet |spServietWrapper servicei] spServietWrapper java-417)

at grg.apache, jasper. serviet |spServiet service)spfileilspServiet java-391)

ar grg.apache, jasper. serviet |spServiet servicelspSendet java-334)

ar javas servier hp. Hupiarder sandcaHmpServier java T2 2)

Ar grg apache. catalind core ApplicationFilterChain.internal DaFleeridpplicatianFilterChain java 306

[EF Remote Call Deails

Figure 3.17: Error details

3.3.4 Detailed Diagnostics Revealing that a Remote Service Call is the
Reason Why a Transaction Slowed Down

According to Figure 3.18 below, slowness has been detected in 9 transactions of the pattern,
/Easykart/Login.jsp. To know the exact URLs of the slow transactions, click on the ‘magnifying glass’ icon
against Slow transactions in Figure 3.18.

% Shipping-Engine :8181

| Java Business Transactions - /Easykart/Loginjsp 1 PR
@ Application Transacti

b e Java Business Transactions Al rransactions (Mumier) 4 [

X [Easykart/ShippingPage.jsp | Mg response time (Msecs) 14729 Q &
(Easykart/Login jzp + Healthy transactions (Number) o |_ “‘"
[Easykart/PaymentPage jsp of Healthy transactions percentage (%) o [

fEasyiart/Productinfo_jsp

(Easyiart/Vaisdate Froduct jsp o Slaw TaNSactions (Number: 2 |_ .t..
Summary o/ Slow transactions response time (Msacs) 14728 | 4
| Slow transactions percentage (%) 100 Q&

~ Errar transactions (Number) [[
o Error transactions respanse time (Mascs) o | =
o EFTOF Lransactions percentage (%) [b &
o Stalled wransactions (Number) [b &
& Stalled ransactions response time (Msecs) 0 |‘_ €
 STalled TANSACHIONS DRTCENTAGE (3 [=
—— = =

109

Monitoring Business Transactions

Figure 3.18: The Layers tab page revealing that 9 transactions of the pattern /Easykart/Login.jsp are slow

Figure 3.19 will then appear listing the slow transactions URLs. To drill down to the source of the slowness of
any of these transactions, click on the ‘magnifying glass’ icon alongside the ‘Slow’ icon of that transaction.

Show Transaction Snapshots for Shipping-Engine 1

Nov 04, 2016 18:24:23 5T JEasykart/Login.jsp 30150 Iocalhost - nip-nio-§ 18 1-exec-3[34]
Eosiow G, MovOd4, 2018 18:25:58 65T [Easykari/Login jsp 13440 logalhost - Nitp=nio=5181-exec-§[50]

B Sow Q Novid4, 2016 19:26:43 5T [EasykartiLogin jsp §714 locaihost - hitp=nig-§181-exec-4[40]

= slow G Now 04, 2016 19:20:2% BT [Easykart/Login jsp 25650 localhost - hitp=nio-§181-exec-9[52]

B oslow Q Mov0s, 2016 130825 BT [Easykart Login jsp 13614 localhost - hep=nio=3 18 1-exec-[48)

E slow G, Now 04, 2016 15:17:03 BT JEasykart/Login jsp 17387 localhast - np-nio-&181-exsc- 10]53]
E Slow O Now 04, Z016 190801 BT JEasykart/Login jsp L1BEY localhost - hitp-nio-8181-sxec-8[50)
Page [1 |ofS 3 » (™ Displaying 1 - 10 of 41

Figure 3.19: Detailed diagnosis listing the slow transactions of the pattern /EasyKart/Login.jsp

Figure 3.20 will then appear depicting how the transaction flows across the JVM and non-Jk its path. From
Figure 3.20, it is clear that a Web service call made by the Tomcat server, Shipping-Engine1:8181, toa
mastercard site in the backend — probably for processing a credit card payment - is slowing down the
transaction.

Cross Application Transaction Flow for [Easykart/Login jsp received on Nov 04, 2016 19:24:23 IST - = n
TRANSACTION SNAPSHOT @ What b this?
User Experience - T Siow
Execution Time 30150 ms
Slow Segment Multiple SLOW calls found

I ek Service .
. 2172 s
PY Ema -
Bitg maabtrand merbastadn 441
3 ’ o 3 ,
Q E e 6550 ma — W= E
E amr | — 2307 ma daaymel oy
Sripping-Eagins 1 E1EL o MTTP Ca . E Ewmail Alart
2]
Tomcaz)
Addreas- ¥ahdabor - Service L PETE > Baialmws Ciwesiss (2 . %
225 mu
ra—y
Casteemere-D
+
=)
JEE®

Figure 3.20: Cross-application transaction flow depicting that the problem is with the Web Service call

110

Monitoring Business Transactions

To know more about this call, click the Web Service icon in Figure 3.20. A Remote Call Details window will
then open listing all the remote calls made by the Shipping-Engine1:8181 server. From this window you can
infer that the Web Service call made to the mastercard site is consuming over 75% of the transaction

execution time. As you can see, a few quick mouse clicks from a Slow transaction in Figure 3.19 has lead you
to the precise web service call that is delaying the transaction.

Call Drill Down for /Easykart/Login.jsp on Shipping-Engine1:8181

= Summary Remote Call Details
[E] Execution Analysis
'WEE SERVICE
[G:. Hot Spots
TYPE DETAILS Time (mis} % TIME OPERATION
— 1} =
| Slow SOL Queries Web Service WL W3 50015 COM e ise rvices | T 23372 BEEEFEN celsiusToFahrenher
[EF Error Desails
|2 Remote Call Details HTTP CALL
TYFE DETAILS Time (ms) B TIME METHQD
HTTP Call hrepcf 1192 168.9.193: 7878 /Easykart/ BrowsaProd 6775 22AT % POST

Figure 3.21: List of remote service calls made by the Shipping-Engine1:8181 server

Conclusion

Conclusion

This document has clearly explained how eG Enterprise monitors Business Transactions. For more
information on eG Enterprise, please visit our web site at www.eginnovations.com or write to us at
sales@eginnovations.com.

	Introduction
	1.1 The eG Business Transaction Monitor (BTM)
	1.2 Pre-requisites for Business Transaction Monitoring Using eG
	1.3 How does the eG BTM Work?

	Installing and Configuring eG BTM
	2.1 Installing eG BTM on a Generic JVM Node
	2.2 Installing eG BTM on an Apache Tomcat Server
	2.2.1 Agent-based Approach to Deploying eG BTM on an Apache Tomcat Server
	2.2.2 Agentless Approach to Deploying eG BTM on an Apache Tomcat Server

	2.3 Installing eG BTM on an IBM WebSphere
	2.3.1 Agent-based Approach to BTM-Enabling IBM WebSphere
	2.3.2 Agentless Approach to BTM-Enabling an IBM WebSphere server

	2.4 Installing eG BTM on an Oracle WebLogic Server
	2.4.1 Agent-based Approach to BTM-Enabling Oracle WebLogic Server
	2.4.2 Agentless Approach to BTM-Enabling an Oracle WebLogic server

	2.5 Installing eG BTM on GlassFish
	2.5.1 Agent-based Approach to BTM-Enabling a GlassFish Server
	2.5.2 Agentless Approach to BTM-Enabling an GlassFish server

	2.6 Installing eG BTM on JBoss EAP
	2.6.1 Agent-based Approach to BTM-Enabling a JBoss EAP Server
	2.6.2 Agentless Approach to BTM-Enabling an JBoss EAP server

	2.7 Installing eG BTM on JBoss WildFly
	2.7.1 Agent-based Approach to BTM-Enabling a JBoss WildFly Server
	2.7.2 Agentless Approach to BTM-Enabling an JBoss WildFly server

	Monitoring Business Transactions
	3.1 Java Business Transactions Test
	3.2 Key Java Business Transactions Test
	3.3 Detailed Diagnostics
	3.3.1 Detailed Diagnostics Revealing that an Inefficient Database Query is the Reason for a Slow Transaction
	3.3.2 Detailed Diagnostics Revealing that a Slow JVM Node is Causing Transactions to Slowdown
	3.3.3 Detailed Diagnostics Revealing the Root-cause of an Error Transaction
	3.3.4 Detailed Diagnostics Revealing that a Remote Service Call is the Reason Why a Transaction Slowed Down

	Conclusion

