
Monitoring PostgreSQL Database servers

Restricted Rights Legend

The information contained in this document is confidential and subject to change without notice. No part
of this document may be reproduced or disclosed to others without the prior permission of eG Innovations
Inc. eG Innovations Inc. makes no warranty of any kind with regard to the software and documentation,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Trademarks

Microsoft Windows, Windows 2008, Windows 7, Windows 8, Windows 10, Windows 2012 andWindows
2016 are either registered trademarks or trademarks of Microsoft Corporation in United States and/or
other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective
owners.

Copyright

©2016 eG Innovations Inc. All rights reserved.

Table of contents
INTRODUCTION 1

ADMINISTERING THE THE EGMANAGER TOMONITOR A POSTGRESQL SERVER 2

MONITORING THE POSTGRESQL SERVER 3

3.1 PostGreSQL I/O 4

3.1.1 PostgreSQL Table I/O Test 4

3.1.2 PostgreSQL Index I/O Test 8

3.2 PostGreSQL Tablespaces 10

3.2.1 PostgreSQL Tablespaces Test 10

3.3 PostGreSQL Server 11

3.3.1 PostgreSQL Background I/O Test 12

3.3.2 PostgreSQL Databases Test 16

3.3.3 PostgreSQL Indexes Test 19

3.3.4 PostgreSQL Unused Indexes Test 20

3.3.5 PostgreSQL Tables Test 22

3.4 PostGreSQL Service 26

3.4.1 PostgreSQL User Connections Test 27

3.4.2 PostgreSQL Locks Test 29

3.4.3 PostgreSQL Access Test 32

3.4.4 PostgreSQL Long Queries Test 33

CONCLUSION 35

Table of Figures
Figure 2.1: Adding the PostgreSQL 2

Figure 2.2: List of tests to be configured for the PostgreSQL 2

Figure 3.1: Layermodel of the PostgresSQL database server 3

Figure 3.2: The tests mapped to the PostGreSQL I/O 4

Figure 3.3: The test mapped to the PostGreSQL Tablespaces layer 10

Figure 3.4: The tests mapped to the PostGreSQL Server layer 12

Figure 3.5: The tests mapped to the PostgreSQL Service layer 27

I ntroduction

1

1
Introduction
PostgreSQL, often simply Postgres , is an object- relational database management system (ORDBMS)
available for many platforms including Linux, FreeBSD, Solaris, Microsoft Windows and Mac OS X. It
implements themajority of the SQL:2008 standard, is ACID-compliant, is fully transactional (including all DDL
statements), has extensible data types, operators, and indexes, and has a large number of extensions written
by third parties.

Owing to its ability to operate on heterogeneous platforms, the PostgreSQL has of late become the preferred
backend for many mission-critical service offerings. A second’s non-availability of the server, a sudden or
steady erosion of free space in one/more of its tablespaces, ineffective caching by the server, and intense
locking can cause serious harm to not only the performance of the PostgreSQL server in question, but also the
services that rely on it. Continuous monitoring of the database server and prompt detection and resolution of
anomalies is hence imperative. For continuously monitoring the PostgreSQL database server, the eG
Enterprise provides a specializedmonitoringmodel, which is explained in the upcoming topics.

Adminis ter ing the the eG Manager to monitor a Pos tgreSQL server

2

2
Administering the the eG Manager
to monitor a PostgreSQL server
1. Log into the eG administrative interface.

2. eG Enterprise cannot automatically discover the PostgreSQL component. You need to manually add the
server using the COMPONENTS page (see Figure 2.1) that appears when the Infrastructure ->
Components -> Add/Modify menu sequence is followed. Remember that components manually added are
managed automatically.

Figure 2.1: Adding the PostgreSQL

3. Specify the Host IP and the Nick name of the Oracle Cluster in Figure 2.1. Then click the Add button to
register the changes.

4. When you attempt to sign out, a list of unconfigured tests appears (see Figure 2.2).

Figure 2.2: List of tests to be configured for the PostgreSQL

5. Click on the PostgreSQL Access test to configure it. To know how to configure the test, refer to the
Section 3.4.3.

6. Once all the tests are configured, signout of the eG administrative interface.

Monitor ing the Pos tgreSQL Server

3

3
Monitoring the PostgreSQL Server
eG Enterprise offers a 100%, web-based PostgreSQLmonitoring model (see Figure 3.1) that provides indepth
insights into the performance and problems related to the PostgreSQL database server. This model can be
used for monitoring PostgreSQL version 9.0 onwards.

Figure 3.1: Layermodel of the PostgresSQL database server

This model can be configured to employ agent-based or agentless techniques to periodically check the status
of critical database operations and proactively report problems. Thesemetrics enable database administrators
to find quick and accurate answers to the following performance queries:

Ø Is the database server available? If so, how quickly does it repond to client queries?

Ø Is the buffer cache utilized optimally, or are requests for heap blocks and index blocks being increasingly
serviced by direct disk accesses?

Ø Is any tablespace running low on free space? If so, which one?

Ø How well does the background writer perform checkpointing? Is too much I/O load being imposed by the
writer in the process of checkpointing?

Ø Are toomany rollbacks occurring on any database? If so, which one?

Ø Are indexes used effectively?

Ø Are there any useless/unused indexes on the server?Which ones are these?

Ø Have toomany sequential scans occurred on any table?

Ø Are inserts, updates, and deletes happening too slowly on any table?

Ø Is any table experiencing extreme ormajor issues while querying data from the server?

Ø Does any user have toomany idle connections on the server?

Monitor ing the Pos tgreSQL Server

4

Ø Is any user’s connection waiting for a locked resource to be released?

Ø Are toomany locks being currently held on the server?Which lock mode is themaximum?

Ø Are any queries running for too long a time on the server? If so, which ones are these?

The sections that follow will deal with the top four layers of Figure 3.1 as the other layers have already been
dealt with in theMonitoring Unix andWindows servers document.

3.1 PostGreSQL I/O
Use the tests mapped to this layer to figure out how the server performs caching and how well the buffer
cache is utilized. Inadequacies in the cache size are thus revealed.

Figure 3.2: The tests mapped to the PostGreSQL I/O

3.1.1 PostgreSQL Table I/O Test

In PostgreSQL, data is stored in tables, and tables are grouped into databases. Each table is stored in its own
disk file. The contents of a table are stored in pages. A table can spanmany pages, depending upon the length
of the row data in the table. A page that contains row data is called a heap block. As indexes are also stored in
page files, a page that contains index data is called an index block.

Typically, in PostgreSQL, most disk I/O is performed on a page-by-page basis. To minimize disk I/O,
PostgreSQL creates an in-memory data structure known as the buffer cache to which the frequently accessed
data is stored. The buffer cache is organized as a collection of 8K pages—each page in the buffer cache
corresponds to a page in some page file. The buffer cache is shared between all processes servicing a given
database.

When you select a row from a table, PostgreSQL will read the heap block that contains the row into the buffer
cache. If there is not enough free space in the cache, PostgreSQL will move some other block out of the
cache. If a block being removed from the cache has been modified, it will be written back out to disk;
otherwise, it will simply be discarded. Index blocks are also buffered in a similar manner.

Monitor ing the Pos tgreSQL Server

5

If the buffer cache is not sized right, it may not be able to hold enough heap or index blocks to serve
subsequent requests. If queries do not find the heap/index blocks they need in the buffer cache, they will be
forced to access the disk directly to retrieve data. As direct disk accesses are I/O-intensive operations, they
may cause serious performance degradations if not nipped in the bud!

Using the PostgreSQL Table I/O test, you can continuously monitor the heap blocks read from the tables in
configured databases and index blocks read from the indexes that correspond to those tables. In the process,
you can understand how the buffer cache serviced these read requests and learn of ineffective cache usage
early, so that you can investigate the reasons for the same (whether/not it is owing to an under-sized cache)
and initiate appropriate remedial action.

Target of the test : PostgreSQL server

Agent deploying the test: An internal agent

Outputs of the test : One set of results for every table (and corresponding index) in every database that is
configured for monitoring in the target PostgreSQL server

1. TEST PERIOD – How often should the test be executed.

2. HOST – The IP address of the server.

3. PORT – The port on which the server is listening. The default port is 5432.

4. USER – In order to monitor a PostgreSQL server, you need to manually create a special database user
account in every PostgreSQL database instance that requires monitoring. When doing so, ensure that
this user is vested with the superuser privileges. The sample script we recommend for user creation for
eGmonitoring is:

CREATE ROLE eguser LOGIN
ENCRYPTED PASSWORD {‘eguser password’}
SUPERUSER NOINHERIT NOCREATEDB NOCREATEROLE;

The name of this user has to be specified in theUSERNAME text box.

5. PASSWORD - The password associated with the above user name (can be ‘NULL’). Here, ‘NULL’
means that the user does not have any password.

6. CONFIRM PASSWORD – Confirm the PASSWORD (if any) by retyping it here.

7. DBNAME - The name of the database to connect to. The default is “postgres”.

8. INCLUDE DB - Specify a comma-separated list of databases that you wish tomonitor.

9. EXCLUDE DB - Specify a comma-separated list of databases that need to be excluded frommonitoring.

10. SSL - The name of this user has to be specified in theUSERNAME text box.

Configurable parameters for the test

Monitor ing the Pos tgreSQL Server

6

Measurement Description Measurement
Unit Interpretation

Heap blocks read: Indicates the rate at which
the heap blocks are read
from this table.

Reads/Sec

Heap blocks hit: Indicates the number of
heap block requests to this
table that were serviced by
the buffer cache during the
last measurement period.

Number Ideally, the value of this measure should
be high.

Heap hit ratio: Indicates the ratio of the
heap block read requests
to this table to the heap
block requests found in the
buffer cache.

Percent Ideally, the value of this measure should
be high. A low value is indicative
ineffective cache usage, which in turn can
increase disk I/O and degrade server
performance.

One of the most common reasons for a
low cache hit ratio is small cache size. In
such a case, you can consider increasing
the cache size. There are two ways that
you can adjust the size of the cache. You
could edit PostgreSQL’s configuration file
($PGDATA/postgresql.conf) and
change the shared_ buffers variable
therein. Alternatively, you can override the
shared_ buffers configuration variable
when you start the postmaster. A sample
command for implementing a shared_
buffers override while starting the
postmaster is given below:

pg_start -o “-B 65” -l /tmp/pg.log

If increasing the cache size also does not
help, then, you can include a limit clause
in your queries to select a sub-set of the
queried tables and add them to the cache.

Index block reads: Indicates the rate at which
the index blocks were read

Reads/Sec

Measurements made by the test

Monitor ing the Pos tgreSQL Server

7

Measurement Description Measurement
Unit Interpretation

from the indexes of this
table.

Blocks hit: Indicates the number of
read requests to the
indexes of this table that
were found in the buffer
cache during the last
measurement period.

Number Ideally, the value of this measure should
be high.

Block hit ratio: Indicates the percentage
of index block requests to
the indexes of this table
that were served by the
buffer cache.

Percent Ideally, the value of this measure should
be high. A low value is indicative of
ineffective cache usage, which in turn can
increase disk I/O and degrade server
performance.

One of the most common reasons for a
low cache hit ratio is small cache size. In
such a case, you can consider increasing
the cache size. There are two ways that
you can adjust the size of the cache. You
could edit PostgreSQL’s configuration file
($PGDATA/postgresql.conf) and
change the shared_ buffers variable
therein. Alternatively, you can override the
shared_ buffers configuration variable
when you start the postmaster. A sample
command for implementing a shared_
buffers override while starting the
postmaster is given below:

pg_start -o “-B 65” -l /tmp/pg.log

If increasing the cache size also does not
help, then, you can include a limit clause
in your queries to select a sub-set of the
queried tables and add them to the cache.

Monitor ing the Pos tgreSQL Server

8

3.1.2 PostgreSQL Index I/O Test

Indexes are buffered in the same way as tables are. Therefore, if too many index blocks are not found in the
buffer cache, disk I/O increases, causing the overall performance of the PostgreSQL server to suffer. It is
hence imperative tomonitor how the cache services index block read requests.

The PostgreSQL Index I/O test helps monitor each index in a database for read requests. In the process, the
test reveals how the buffer cache serviced these read requests and provides early pointers to ineffective
cache usage, so that you can investigate the reasons for the same (whether/not it is owing to an under-sized
cache) and initiate appropriate remedial action.

Target of the test : PostgreSQL server

Agent deploying the test: An internal agent

Outputs of the test : One set of results for every in index in every database that is configured for monitoring in
the target PostgreSQL server

1. TEST PERIOD – How often should the test be executed

2. HOST – The IP address of the server

3. PORT – The port on which the server is listening. The default port is 5432.

4. USER – In order to monitor a PostgreSQL server, you need to manually create a special database user
account in every PostgreSQL database instance that requires monitoring. When doing so, ensure that
this user is vested with the superuser privileges. The sample script we recommend for user creation for
eGmonitoring is:

CREATE ROLE eguser LOGIN
ENCRYPTED PASSWORD {‘eguser password’}
SUPERUSER NOINHERIT NOCREATEDB NOCREATEROLE;

The name of this user has to be specified in theUSERNAME text box.

5. PASSWORD - The password associated with the above user name (can be ‘NULL’). Here, ‘NULL’
means that the user does not have any password.

6. CONFIRM PASSWORD – Confirm the PASSWORD (if any) by retyping it here.

7. DBNAME - The name of the database to connect to. The default is “postgres”.

8. INCLUDE DB - Specify a comma-separated list of databases that you wish tomonitor.

9. EXCLUDE DB - Specify a comma-separated list of databases that need to be excluded frommonitoring.

10. SSL - The name of this user has to be specified in theUSERNAME text box.

Configurable parameters for the test

Monitor ing the Pos tgreSQL Server

9

Measurement Description Measurement
Unit Interpretation

Index block reads: Indicates the rate at which
the index blocks were read
from this index during the
last measurement period.

Reads/Sec

Blocks hit: Indicates the number of
read requests to this index
that were found in the
buffer cache during the last
measurement period.

Number Ideally, the value of this measure should
be high.

Hit ratio: Indicates the percentage
of index block requests to
this index that were served
by the buffer cache.

Percent Ideally, the value of this measure should
be high. A low value is indicative
ineffective cache usage, which in turn can
increase disk I/O and degrade server
performance.

One of the most common reasons for a
low cache hit ratio is small cache size. In
such a case, you can consider increasing
the cache size. There are two ways that
you can adjust the size of the cache. You
could edit PostgreSQL’s configuration file
($PGDATA/postgresql.conf) and
change the shared_ buffers variable
therein. Alternatively, you can override the
shared_ buffers configuration variable
when you start the postmaster. A sample
command for implementing a shared_
buffers override while starting the
postmaster is given below:

pg_start -o “-B 65” -l /tmp/pg.log

If increasing the cache size also does not
help, then, you can include a limit clause
in your queries to select a sub-set of the
queried tables and add them to the cache.

Measurements made by the test

Monitor ing the Pos tgreSQL Server

10

3.2 PostGreSQL Tablespaces
To know whether any tablespace has been excessively utilized, use the test mapped to this layer.

Figure 3.3: The test mapped to the PostGreSQL Tablespaces layer

3.2.1 PostgreSQL Tablespaces Test

Tablespaces in PostgreSQL allow database administrators to define locations in the file system where the
files representing database objects can be stored. Once created, a tablespace can be referred to by name
when creating database objects.

By using tablespaces, an administrator can control the disk layout of a PostgreSQL installation. This is useful
in at least two ways. First, if the partition or volume on which the cluster was initialized runs out of space and
cannot be extended, a tablespace can be created on a different partition and used until the system can be
reconfigured.

Second, tablespaces allow an administrator to use knowledge of the usage pattern of database objects to
optimize performance. For example, an index which is very heavily used can be placed on a very fast, highly
available disk, such as an expensive solid state device. At the same time a table storing archived data which
is rarely used or not performance critical could be stored on a less expensive, slower disk system.

Tablespaces should be adequately sized. If not, the tablespaces may not be able to accomodate many critical
database objects, thereby causing the performance of the database to suffer. Continuous monitoring of
tablespace size and usage is hence important. The PostgreSQL Tablespaces test does just that. This test
auto-discovers tablespaces managed by this PostgreSQL server and reports how well the tablespace has
been utilized.

Target of the test : PostgreSQL server

Agent deploying the test: An internal agent

Monitor ing the Pos tgreSQL Server

11

Outputs of the test : One set of results for every tablespace in every database that is configured for
monitoring in the target PostgreSQL server

1. TEST PERIOD – How often should the test be executed.

2. HOST – The IP address of the server.

3. PORT – The port on which the server is listening. The default port is 5432.

4. USER – In order to monitor a PostgreSQL server, you need to manually create a special database user
account in every PostgreSQL database instance that requires monitoring. When doing so, ensure that
this user is vested with the superuser privileges. The sample script we recommend for user creation for
eGmonitoring is:

CREATE ROLE eguser LOGIN
ENCRYPTED PASSWORD {‘eguser password’}
SUPERUSER NOINHERIT NOCREATEDB NOCREATEROLE;

The name of this user has to be specified in theUSERNAME text box.

5. PASSWORD - The password associated with the above user name (can be ‘NULL’). Here, ‘NULL’
means that the user does not have any password.

6. CONFIRM PASSWORD – Confirm the PASSWORD (if any) by retyping it here.

7. DBNAME - The name of the database to connect to. The default is “postgres”.

8. INCLUDE DB - Specify a comma-separated list of databases that you wish tomonitor.

9. EXCLUDE DB - Specify a comma-separated list of databases that need to be excluded frommonitoring.

10. SSL - The name of this user has to be specified in theUSERNAME text box.

Configurable parameters for the test

Measurement Description Measurement
Unit Interpretation

Tablespace
size:

Indicates the amount of
space currently used in
this tablespace.

MB A high value of this measure indicates that the
table consumes a large chunk of space in the
tablespace which may cause serious
performance issues ranging from slowdown to
shutdowns of this database.

Measurements made by the test

3.3 PostGreSQL Server
Using the tests mapped to this layer, you can determine:

Monitor ing the Pos tgreSQL Server

12

l Whether/not the background writer minimizes the I/O load on the server;

l How well the server handles the transaction load to it, and whether any processing pain-points can be
noticed;

l Whether/ not the indexes are properly used;

l The number and names of unused indexes (if any);

l The count of sequential scans and index scans that occurred per table and the rows that were returned in
the process.

Figure 3.4: The tests mapped to the PostGreSQL Server layer

3.3.1 PostgreSQL Background I/O Test

Checkpoints are points in the sequence of transactions at which it is guaranteed that the heap and index data
files have been updated with all information written before the checkpoint. At checkpoint time, all dirty data
pages are flushed to disk and a special checkpoint record is written to the log file. In the event of a crash, the
crash recovery procedure looks at the latest checkpoint record to determine the point in the log (known as the
redo record) from which it should start the REDO operation. Any changes made to data files before that point
are guaranteed to be already on disk.

The checkpoint requirement of flushing all dirty data pages to disk can cause a significant I/O load. To
minimize this I/O, there is a separate server process called the background writer in PostgreSQL, whose sole
function is to issue writes of “dirty” shared buffers. The background writer will continuously trickle out dirty
pages to disk, so that only a few pages will need to be forced out when checkpoint time arrives, instead of the
storm of dirty-buffer writes that formerly occurred at each checkpoint. However, there is a net overall increase
in I/O load, because where a repeatedly-dirtied page might before have been written only once per checkpoint
interval, the background writer might write it several times in the same interval.

You hence need to continuously track how often the background writer performs checkpointing and how much
I/O load it imposes on the server, so that you can proactively detect potential overload conditions,

Monitor ing the Pos tgreSQL Server

13

appropriately fine-tune the checkpointing activity performed by the background writer to minimize the I/O, and
thus prevent the performance degradation that may otherwise occur on the server. The PostgreSQL
Background I/O test helps achieve all of the above. In the process, the test also reports useful statistics
related to shared buffers.

Target of the test : PostgreSQL server

Agent deploying the test: An internal agent

Outputs of the test : One set of results for the target PostgreSQL server

1. TEST PERIOD – How often should the test be executed.

2. HOST – The IP address of the server.

3. PORT – The port on which the server is listening. The default port is 5432.

4. USER – In order to monitor a PostgreSQL server, you need to manually create a special database user
account in every PostgreSQL database instance that requires monitoring. When doing so, ensure that
this user is vested with the superuser privileges. The sample script we recommend for user creation for
eGmonitoring is:

CREATE ROLE eguser LOGIN
ENCRYPTED PASSWORD {‘eguser password’}
SUPERUSER NOINHERIT NOCREATEDB NOCREATEROLE;

The name of this user has to be specified in theUSERNAME text box.

5. PASSWORD - The password associated with the above user name (can be ‘NULL’). Here, ‘NULL’
means that the user does not have any password.

6. CONFIRM PASSWORD – Confirm the PASSWORD (if any) by retyping it here.

7. DBNAME - The name of the database to connect to. The default is “postgres”.

8. SSL - The name of this user has to be specified in theUSERNAME text box.

Configurable parameters for the test

Measurement Description Measurement
Unit Interpretation

Checkpoint
requests:

Indicates the number of
checkpoint requests
received by the server
during the last
measurement period.

Number A checkpoint request is generated every
checkpoint_segments log segments, or
every checkpoint_ timeout seconds,
whichever comes first. While
checkpoint_ segments denotes the
maximum number of log file segments

Measurements made by the test

Monitor ing the Pos tgreSQL Server

14

Measurement Description Measurement
Unit Interpretation

between automatic WAL checkpoints,
the checkpoint_ timeout indicates the
maximum time between WAL
checkpoints. The default settings are 3
segments and 300 seconds (5 minutes),
respectively. Reducing checkpoint_
segments and/or checkpoint_ timeout
causes checkpoints to occur more
often. This allows faster after- crash
recovery (since less work will need to
be redone). However, one must balance
this against the increased cost of
flushing dirty data pages more often. If
full_ page_ writes is set (as is the
default), there is another factor to
consider.

To ensure data page consistency, the
first modification of a data page after
each checkpoint results in logging the
entire page content. In that case, a
smaller checkpoint interval increases
the volume of output to the WAL log,
partially negating the goal of using a
smaller interval, and in any case
causing more disk I/O. Checkpoints are
fairly expensive, first because they
require writing out all currently dirty
buffers, and second because they result
in extra subsequent WAL traffic as
discussed above. It is therefore wise to
set the checkpointing parameters high
enough that checkpoints don’t happen
too often.

Check point time
outs:

Indicates the number of
scheduled checkpoints that
did not occur even after the
checkpoint_ timeout setting
was violated during the last
measurement period.

Number Ideally, the value of this measure should
be low. A consistent increase in this
value is a cause of concern, as it
indicates that checkpoints are not
occurring in the desired frequency. This
in turn will significantly slowdown after-

Monitor ing the Pos tgreSQL Server

15

Measurement Description Measurement
Unit Interpretation

crash recovery, as more work will have
to be redone.

Buffers freed: Indicates the total number
of buffers that were
released for re-use from the
buffer cache during the last
measurement period, when
the checkpoint_ segments
setting was violated; this
typically causes the
background writer to
automatically write dirty
buffers to the disk.

Number A high value is desired for this measure.
A low value could indicate a
checkpointing bottleneck, owing to
which the background writer is unable to
write updated index and heap files to the
disk at an optimal rate. In such cases,
the buffer cachemay not have adequate
free buffers to service subsequent write
requests. This is a cause for concern in
write-intensive database environments.

Buffers cleaned: Indicates the number of
buffer that were written to
the disk during the last
measurement period in
anticipation of being
allocated in the future.

Number The background writer typically stalls
some other process for a moment while
it writes out dirty data. To keep that from
happening as often, the background
writer process scans forward looking for
blocks that might be allocated in the
near future that are dirty and that have a
low usage count (alternatively called the
Least Recently Used or LRUblocks).
When it finds them, it writes some of
them out pre- emptively, based on
historical allocation rates.

Max written: Indicates the maximum
number of dirty buffers that
can be written into the buffer
cache during the last
measurement period.

Number If this measure indicates a high value it
indicates that adequate buffers are not
free in the cache. To optimize the value
of this measure, you can increase the
value of the bgwriter_ lru_ maxpages
parameter.

Buffers freed by
connections:

Indicates the number of
buffers that were released
from the cache for re-use
during the last
measurement period, when

Number A high value is desired for this measure,
as it reduces the need for an I/O-
intensive operation such as
‘checkpointing’.

Monitor ing the Pos tgreSQL Server

16

Measurement Description Measurement
Unit Interpretation

users wrote data directly to
the disk.

Buffers allocated: Indicates the total number
of calls to allocate a new
buffer for a page (whether or
not it was already cached)
during the last
measurement period.

Number

3.3.2 PostgreSQL Databases Test

For each database on the PostgreSQL server, this test reports the transaction load on the database and
reveals how well the database processes the transaction requests to it and how well it utilizes its cache.
Overload conditions and processing bottlenecks are thus revealed.

Target of the test : PostgreSQL server

Agent deploying the test: An internal agent

Outputs of the test :One set of results for every database on the target PostgreSQL server

1. TEST PERIOD – How often should the test be executed.

2. HOST – The IP address of the server.

3. PORT – The port on which the server is listening. The default port is 5432.

4. USER – In order to monitor a PostgreSQL server, you need to manually create a special database user
account in every PostgreSQL database instance that requires monitoring. When doing so, ensure that
this user is vested with the superuser privileges. The sample script we recommend for user creation for
eGmonitoring is:

CREATE ROLE eguser LOGIN
ENCRYPTED PASSWORD {‘eguser password’}
SUPERUSER NOINHERIT NOCREATEDB NOCREATEROLE;

The name of this user has to be specified in theUSERNAME text box.

5. PASSWORD - The password associated with the above user name (can be ‘NULL’). Here, ‘NULL’
means that the user does not have any password.

6. CONFIRM PASSWORD – Confirm the PASSWORD (if any) by retyping it here.

7. DBNAME - The name of the database to connect to. The default is “postgres”.

Configurable parameters for the test

Monitor ing the Pos tgreSQL Server

17

8. SSL - The name of this user has to be specified in theUSERNAME text box.

9. DETAILED DIAGNOSIS – To make diagnosis more efficient and accurate, the eG Enterprise suite
embeds an optional detailed diagnostic capability. With this capability, the eG agents can be configured
to run detailed, more elaborate tests as and when specific problems are detected. To enable the
detailed diagnosis capability of this test for a particular server, choose the On option. To disable the
capability, click on theOff option.

The option to selectively enable/disable the detailed diagnosis capability will be available only if the
following conditions are fulfilled:

l The eGmanager license should allow the detailed diagnosis capability

l Both the normal and abnormal frequencies configured for the detailed diagnosis measures should not
be 0.

Measurement Description Measurement
Unit Interpretation

Database size: Indicates the current size of
this database.

KB

Cache hit ratio: Indicates the percentage of
requests to this database
that were serviced by the
cache, without having to
read from disk.

Percent Because reading from the cache is less
expensive than reading from disk, you
want the ratio to be high. The higher this
value is, the better. Generally, you can
increase the cache hit ratio by
increasing the amount of memory
available to the database server.

The detailed diagnosis of this measure
provides you with the complete details
of the database such as the number of
server processes running on it, the
number of transactions committed and
rolled back, and the number of rows
inserted, updated, and deleted.

Commit ratio: Indicates the rate at which
live rows are fetched while
this index is scanned.

Percent

Server process: Indicates the number of
processes that are currently

Number

Measurements made by the test

Monitor ing the Pos tgreSQL Server

18

Measurement Description Measurement
Unit Interpretation

running on this database.

Inserts: Indicates the rate at which
the records are inserted into
this database.

Inserts/Sec

Deletes: Indicates the rate at which
the records are deleted from
this database.

Deletes/Sec

Updates: Indicates the rate at which
records are updated into
this database.

Updates/Sec

Commits: Indicates the transaction
throughput.

Commits/Sec A decrease in this measure during the
monitoring period may indicate that the
applications are not doing frequent
commits. This may lead to problems
with logging and data concurrency.

The cause has to be probed in the
application.

Rollbacks: Indicates the rate at which
rollbacks occurred on this
database.

Rollbacks/Sec A high rollback rate is an indicator of bad
performance, since work performed up
to the rollback point is wasted. The
cause of the rollbacks has to be probed
in the application.

Rows fetched: Indicates the rate at which
the rows that were read
from this database based
on a user query are stored in
the buffer.

Fetches/Sec

Rows returned: Indicates the rate at which
the rows are fetched from
the buffer and sent to the
client application.

Returns/Sec If the size of the rows that are fetched
from the buffer is too large, then the
rows are fragmented and transferred to
the client which is time consuming. This
may in turn affect the performance of

Monitor ing the Pos tgreSQL Server

19

Measurement Description Measurement
Unit Interpretation

the database to some extent.

Blocks read: Indicates the rate at which
the blocks are read from
this database.

Fetches/Sec

Block hits: Indicates the rate at which
the blocks are fetched after
a read is performed in this
database.

Hits/Sec

3.3.3 PostgreSQL Indexes Test

An index is a data structure that a database uses to reduce the amount of time it takes to perform certain
operations. An index can also be used to ensure that duplicate values don’t appear where they are not needed.

This test monitors the indexes on the PostgreSQL server and helps administrators quickly and accurately
assess the effectiveness of these indexes.

Target of the test : PostgreSQL server

Agent deploying the test: An internal agent

Outputs of the test :One set of results for every index for every table in each database that is configured for
monitoring on the target PostgreSQL server

1. TEST PERIOD – How often should the test be executed.

2. HOST – The IP address of the server.

3. PORT – The port on which the server is listening. The default port is 5432.

4. USER – In order to monitor a PostgreSQL server, you need to manually create a special database user
account in every PostgreSQL database instance that requires monitoring. When doing so, ensure that
this user is vested with the superuser privileges. The sample script we recommend for user creation for
eGmonitoring is:

CREATE ROLE eguser LOGIN
ENCRYPTED PASSWORD {‘eguser password’}
SUPERUSER NOINHERIT NOCREATEDB NOCREATEROLE;

The name of this user has to be specified in theUSERNAME text box.

5. PASSWORD - The password associated with the above user name (can be ‘NULL’). Here, ‘NULL’

Configurable parameters for the test

Monitor ing the Pos tgreSQL Server

20

means that the user does not have any password.

6. CONFIRM PASSWORD – Confirm the PASSWORD (if any) by retyping it here.

7. DBNAME - The name of the database to connect to. The default is “postgres”.

8. INCLUDE DB - Specify a comma-separated list of databases that you wish tomonitor.

9. EXCLUDE DB - Specify a comma-separated list of databases that need to be excluded frommonitoring.

10. SSL - The name of this user has to be specified in theUSERNAME text box.

Measurement Description Measurement
Unit Interpretation

Index scans: Indicates the rate at which
the index scans are initiated
on this index in this
database .

Scans/Sec

Rows read: Indicates the rate at which
the index entries (rows) are
read during the index scans
on this index.

Reads/Sec

Rows fetched: Indicates the rate at which
the rows are fetched from
this index upon execution of
a query.

Fetches/Sec If the value of this measure is greater
than the value of the Rows read
measure, it indicates a possibility of
index fragmentation or that the executed
query is inefficient.

Measurements made by the test

3.3.4 PostgreSQL Unused Indexes Test

While at one end indexes greatly enhance database performance, at the other they also add significant
overhead to table change operations. Useless/unused indices can therefore be unnecessary resource hogs.
Such indexes are typically not used by any regular query and may not enforce a constraint. However, these
unneeded indexes cost you in several ways: they slow updates, inserts and deletes; they may keep HOT
from updating the row in-place, requiring more VACUUMs; they take time to VACUUM; they add to query
planning time; they take time to backup and restore. Administrators hence need to identify such indexes and
eliminate them. The PostgreSQL Unused Indexes test helps administrators achieve the same. This test
reports the number and names of unused/useless indexes, and thus prompts administrators to remove them
so as to save the server from unnecessary performance degradations.

Target of the test : PostgreSQL server

Agent deploying the test: An internal agent

Monitor ing the Pos tgreSQL Server

21

Outputs of the test :One set of results for the target PostgreSQL server

1. TEST PERIOD – How often should the test be executed.

2. HOST – The IP address of the server.

3. PORT – The port on which the server is listening. The default port is 5432.

4. USER – In order to monitor a PostgreSQL server, you need to manually create a special database user
account in every PostgreSQL database instance that requires monitoring. When doing so, ensure that
this user is vested with the superuser privileges. The sample script we recommend for user creation for
eGmonitoring is:

CREATE ROLE eguser LOGIN
ENCRYPTED PASSWORD {‘eguser password’}
SUPERUSER NOINHERIT NOCREATEDB NOCREATEROLE;

The name of this user has to be specified in theUSERNAME text box.

5. PASSWORD - The password associated with the above user name (can be ‘NULL’). Here, ‘NULL’
means that the user does not have any password.

6. CONFIRM PASSWORD – Confirm the PASSWORD (if any) by retyping it here.

7. DBNAME - The name of the database to connect to. The default is “postgres”.

8. INCLUDE DB - Specify a comma-separated list of databases that you wish tomonitor.

9. EXCLUDE DB - Specify a comma-separated list of databases that need to be excluded frommonitoring.

10. SSL - The name of this user has to be specified in theUSERNAME text box.

11. DETAILED DIAGNOSIS – To make diagnosis more efficient and accurate, the eG Enterprise suite
embeds an optional detailed diagnostic capability. With this capability, the eG agents can be configured
to run detailed, more elaborate tests as and when specific problems are detected. To enable the
detailed diagnosis capability of this test for a particular server, choose the On option. To disable the
capability, click on theOff option.

The option to selectively enable/disable the detailed diagnosis capability will be available only if the
following conditions are fulfilled:

l The eGmanager license should allow the detailed diagnosis capability

l Both the normal and abnormal frequencies configured for the detailed diagnosis measures should not
be 0.

Configurable parameters for the test

Monitor ing the Pos tgreSQL Server

22

Measurement Description Measurement
Unit Interpretation

Number of indexes: Indicates the number of
indexes that are currently
unused/useless on the
server.

Number A high value of this measure is a cause
for concern. Use the detailed diagnosis
of this measure to identify the unused
indexes and take measures to get rid of
them.

Measurements made by the test

3.3.5 PostgreSQL Tables Test

The real test of the performance of a database server lies in how quickly the database responds to queries.
Whenever users complaint of slow execution of their queries, administrators need to know the reason for the
delay - is it because the queries themselves are badly designed? or is it due to how the database server
performs table scans and returns the requested result set to the queries? The PostgreSQL Tables test helps
with this root-cause analysis.

This test auto-discovers the tables in the configured databases and reports the number of times every table
was scanned, the type of scanning (sequential or index) that was performed, and the rate at which the server
reads data (via index and sequential scans) from each table. On the basis of this data, the test also indicates if
any table is experiencing any query processing bottlenecks, and if so, how severe is the problem. In addition,
the test also reveals how quickly critical database operations such as inserts, deletes, and updates, are
performed on every table. Using this information, administrator can figure out whether/not the number and
nature of scans performed on the tables are causing queries to the corresponding database to slowdown.

Target of the test : PostgreSQL server

Agent deploying the test: An internal agent

Outputs of the test : One set of results for each table on every database configured for monitoring on the
target PostgreSQL server

1. TEST PERIOD – How often should the test be executed.

2. HOST – The IP address of the server.

3. PORT – The port on which the server is listening. The default port is 5432.

4. USER – In order to monitor a PostgreSQL server, you need to manually create a special database user
account in every PostgreSQL database instance that requires monitoring. When doing so, ensure that
this user is vested with the superuser privileges. The sample script we recommend for user creation for
eGmonitoring is:

CREATE ROLE eguser LOGIN

Configurable parameters for the test

Monitor ing the Pos tgreSQL Server

23

ENCRYPTED PASSWORD {‘eguser password’}
SUPERUSER NOINHERIT NOCREATEDB NOCREATEROLE;

The name of this user has to be specified in theUSERNAME text box.

5. PASSWORD - The password associated with the above user name (can be ‘NULL’). Here, ‘NULL’
means that the user does not have any password.

6. CONFIRM PASSWORD – Confirm the PASSWORD (if any) by retyping it here.

7. DBNAME - The name of the database to connect to. The default is “postgres”.

8. INCLUDE DB - Specify a comma-separated list of databases that you wish tomonitor.

9. EXCLUDE DB - Specify a comma-separated list of databases that need to be excluded frommonitoring.

10. SSL - The name of this user has to be specified in theUSERNAME text box.

Measurement Descrption Measurement
Unit Interpretation

Sequence scans
count:

Indicates the number of
sequential scans initiated
on this table during the last
measurement period.

Number Sequential or Full table scan is a scan
made on the database where each row of
the table under scan is read in a sequential
(serial) order and the columns encountered
are checked for the validity of a condition.
Full table scans are usually the slowest
method of scanning a table due to the
heavy amount of I/O reads and writes
required from the disk which consists of
multiple seeks as well as costly disk to
memory transfers. Typically therefore, a
low value is desired for this measure.

However, if a query returns more than
approximately 5-10% of all rows in the
table, then PostgreSQL prefers the
sequential scan over the index scan. This
is because an index scan requires several
I/O operations for each row (look up the
row in the index, then retrieve the row from
the heap). Whereas a sequential scan only
requires a single I/O for each row - or even
less because a block (page) on the disk
contains more than one row, so more than
one row can be fetched with a single I/O

Measurements made by the test

Monitor ing the Pos tgreSQL Server

24

Measurement Descrption Measurement
Unit Interpretation

operation.

Sequence reads
row count:

Indicates the number of
rows that are processed
through sequential scan
from this table during the
last measurement period.

Number

Average reads per
scan:

Indicates the rate at which
rows from this table were
processed through a
sequential scan.

Fetches/Sec A high value is desired for this measure. If
the value is low or falls consistently, it
indicates bottlenecks while performing
sequential scans on the table.

Index scans: Indicates the number of
index scans initiated over
all the indexes belonging
to this table during the last
measurement period.

Number An index scan occurs when the database
manager accesses an index for any of the
following reasons:

l To narrow the set of qualifying rows (by
scanning the rows in a certain range of
the index) before accessing the base
table.

l To order the output.

l To retrieve the requested column data
directly. If all of the requested data is in
the index, the indexed table does not
need to be accessed. This is known as
an index-only access.

Typically, a high value of this measure is
desired, as index scans are I/O-friendly
operations.

However, if a query returns more than
approximately 5-10% of all rows in the
table, then PostgreSQL prefers the
sequential scan over the index scan. This
is because an index scan requires several
I/O operations for each row (look up the
row in the index, then retrieve the row from
the heap). Whereas a sequential scan only
requires a single I/O for each row - or even

Monitor ing the Pos tgreSQL Server

25

Measurement Descrption Measurement
Unit Interpretation

less because a block (page) on the disk
contains more than one row, so more than
one row can be fetched with a single I/O
operation.

Average fetch per
index:

Indicates the rate at which
the rows are processed
through an index scan on
this table.

Fetches/Sec A high value is desired for this measure. If
the value is low or falls consistently, it
indicates bottlenecks while performing
index scans on the table.

Table scans: Indicates the number of
times this table was
scanned during the last
measurement period.

Number A high value indicates that there are no
proper indexes for this table. This may
cause delays in query execution.

Inserts: Indicates the rate at which
the rows are inserted into
this table.

Inserts/Sec

Deletes: Indicates the rate at which
the rows are deleted from
this table.

Deletes/Sec

Updates: Indicates the rate at which
the rows are updated in
this table.

Updates/Sec

Priority: Indicates the type of
problem that is currently
experienced by this table
while processing a query.

The difference between the Sequence
scan count and the Index scan count
measures determines the Priority of the
problem experienced by a table. The
various Priorities this measure reports and
their numeric equivalents as shown in the
table:

Numeric Value State
1 Minor

Problem

Monitor ing the Pos tgreSQL Server

26

Measurement Descrption Measurement
Unit Interpretation

Numeric Value State
2 Major

Problem
3 Extreme

Problem

Note:

By default, this measure reports the
above-mentioned States while indicating
the type of problem that is experienced
while querying this database. However,
the graph of this measure will be
represented using the corresponding
numeric equivalents of the states as
mentioned in the table above.

If the severity of this measure is high, it
indicates that the query used may be
inefficient or there may be a problem with
the indexing of the column or there may be
a possibility of fragmentation of the table
or index of this database.

3.4 PostGreSQL Service
Besides revealing the availability and responsiveness of the database server, the tests mapped to this layer
also sheds light on the idle and waiting user connections on the server, the level of locking activity on the
server, and the number and details of queries to the server that have been running for an unreasonably long
time.

Monitor ing the Pos tgreSQL Server

27

Figure 3.5: The tests mapped to the PostgreSQL Service layer

3.4.1 PostgreSQL User Connections Test

This test monitors the users who are currently connected to the server and reports the number and state of
each user connection. Using the metrics reported by this test, administrators can promptly isolate idle and
waiting connections, which are a drain on a server’s resources.

Target of the test : PostgreSQL server

Agent deploying the test: An internal agent

Outputs of the test :One set of results for each user currently connected to the target PostgreSQL server

1. TEST PERIOD – How often should the test be executed.

2. HOST – The IP address of the server.

3. PORT – The port on which the server is listening. The default port is 5432.

4. USER – In order to monitor a PostgreSQL server, you need to manually create a special database user
account in every PostgreSQL database instance that requires monitoring. When doing so, ensure that
this user is vested with the superuser privileges. The sample script we recommend for user creation for
eGmonitoring is:

CREATE ROLE eguser LOGIN
ENCRYPTED PASSWORD {‘eguser password’}
SUPERUSER NOINHERIT NOCREATEDB NOCREATEROLE;

The name of this user has to be specified in theUSERNAME text box.

5. PASSWORD - The password associated with the above user name (can be ‘NULL’). Here, ‘NULL’

Configurable parameters for the test

Monitor ing the Pos tgreSQL Server

28

means that the user does not have any password.

6. CONFIRM PASSWORD – Confirm the PASSWORD (if any) by retyping it here.

7. DBNAME - The name of the database to connect to. The default is “postgres”.

8. SSL - The name of this user has to be specified in theUSERNAME text box.

9. DETAILED DIAGNOSIS – To make diagnosis more efficient and accurate, the eG Enterprise suite
embeds an optional detailed diagnostic capability. With this capability, the eG agents can be configured
to run detailed, more elaborate tests as and when specific problems are detected. To enable the
detailed diagnosis capability of this test for a particular server, choose the On option. To disable the
capability, click on theOff option.

The option to selectively enable/disable the detailed diagnosis capability will be available only if the
following conditions are fulfilled:

l The eGmanager license should allow the detailed diagnosis capability

l Both the normal and abnormal frequencies configured for the detailed diagnosis measures should not
be 0.

Measurement Description Measurement
Unit Interpretation

Total connections: Indicates the total number of
connections that are
currently established by this
user on the server.

Number

Idle connections: Indicates the number of
connections of this user that
are currently idle on the
server.

Number Ideally, the value of this measure
should be low. A high value is
indicative of a large number of idle
connections, which in turn causes
unnecessary consumption of critical
server resources. Idle connections also
unnecessarily lock new connections
from the connection pool, thereby
denying other users access to the
server for performing important tasks.
Use the detailed diagnosis of this
measure to view the details of the idle
connections.

Active connections: Indicates the number of Number Use the detailed diagnosis of this

Measurements made by the test

Monitor ing the Pos tgreSQL Server

29

Measurement Description Measurement
Unit Interpretation

connections of this user that
are currently active.

measure to view the details of the
active connections.

Waiting
connections:

Indicates the number of
connections of this user that
are currently waiting for a
resource/database object/
lock to be released.

Number The value of this measure should be
kept at a minimum, as waiting
connections also cause a resource
drain.

Use the detailed diagnosis of this
measure to view the details of the
waiting connections.

3.4.2 PostgreSQL Locks Test

PostgreSQL provides various lock modes to control concurrent access to data in tables. These modes can be
used for application-controlled locking in situations where MVCC does not give the desired behavior. Also,
most PostgreSQL commands automatically acquire locks of appropriate modes to ensure that referenced
tables are not dropped or modified in incompatible ways while the command executes. The common lock
modes are as follows:
Ø ACCESS SHARE

Conflicts with the ACCESS EXCLUSIVE lock mode only.

The SELECT command acquires a lock of this mode on referenced tables. In general, any query that only
reads a table and does not modify it will acquire this lock mode.

Ø ROW SHARE

Conflicts with the EXCLUSIVE and ACCESS EXCLUSIVE lock modes.

The SELECT FOR UPDATE and SELECT FOR SHARE commands acquire a lock of this mode on the
target table(s) (in addition to ACCESS SHARE locks on any other tables that are referenced but not
selected FOR UPDATE/FOR SHARE).

Ø ROW EXCLUSIVE
Conflicts with the SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE lock
modes.

The commands UPDATE, DELETE, and INSERT acquire this lock mode on the target table (in addition
to ACCESS SHARE locks on any other referenced tables). In general, this lock mode will be acquired by
any command that modifies the data in a table.

Ø SHARE UPDATE EXCLUSIVE

Monitor ing the Pos tgreSQL Server

30

Conflicts with the SHARE UPDATE EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE,
and ACCESS EXCLUSIVE lock modes. This mode protects a table against concurrent schema changes
and VACUUM runs.

Acquired by VACUUM (without FULL), ANALYZE, and CREATE INDEX CONCURRENTLY.

Ø SHARE

Conflicts with the ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE ROW EXCLUSIVE,
EXCLUSIVE, and ACCESS EXCLUSIVE lock modes. This mode protects a table against concurrent
data changes.

Acquired by CREATE INDEX (without CONCURRENTLY).
Ø SHARE ROW EXCLUSIVE

Conflicts with the ROW EXCLUSIVE , SHARE UPDATE EXCLUSIVE , SHARE , SHARE ROW
EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE lock modes.

This lock mode is not automatically acquired by any PostgreSQL command.

Ø EXCLUSIVE

Conflicts with the ROW SHARE , ROW EXCLUSIVE , SHARE UPDATE EXCLUSIVE , SHARE ,
SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE lock modes. This mode allows
only concurrent ACCESS SHARE locks, i.e., only reads from the table can proceed in parallel with a
transaction holding this lock mode.

This lock mode is not automatically acquired on user tables by any PostgreSQL command. However it is
acquired on certain system catalogs in some operations.

Ø ACCESS EXCLUSIVE
Conflicts with locks of all modes (ACCESS SHARE, ROW SHARE, ROW EXCLUSIVE, SHARE
UPDATE EXCLUSIVE , SHARE , SHARE ROW EXCLUSIVE , EXCLUSIVE , and ACCESS
EXCLUSIVE). This mode guarantees that the holder is the only transaction accessing the table in any
way.

Acquired by the ALTER TABLE, DROP TABLE, TRUNCATE, REINDEX, CLUSTER, and VACUUM
FULL commands. This is also the default lock mode for LOCK TABLE statements that do not specify a
mode explicitly.

The locking activity of a database server must be monitored carefully because an application holding a
specific lock for a long time could cause a number of other transactions relying on the same lock to fail. The
PostgreSQL Locks test does just that. For every lock mode that is currently active on the database server,
this test reports the total number of locks that are in that mode.

Target of the test : PostgreSQL server

Agent deploying the test: An internal agent

Outputs of the test :One set of results for each lock mode currently held on the target PostgreSQL server

Monitor ing the Pos tgreSQL Server

31

1. TEST PERIOD – How often should the test be executed.

2. HOST – The IP address of the server.

3. PORT – The port on which the server is listening. The default port is 5432.

4. USER – In order to monitor a PostgreSQL server, you need to manually create a special database user
account in every PostgreSQL database instance that requires monitoring. When doing so, ensure that
this user is vested with the superuser privileges. The sample script we recommend for user creation for
eGmonitoring is:

CREATE ROLE eguser LOGIN
ENCRYPTED PASSWORD {‘eguser password’}
SUPERUSER NOINHERIT NOCREATEDB NOCREATEROLE;

The name of this user has to be specified in theUSERNAME text box.

5. PASSWORD - The password associated with the above user name (can be ‘NULL’). Here, ‘NULL’
means that the user does not have any password.

6. CONFIRM PASSWORD – Confirm the PASSWORD (if any) by retyping it here.

7. DBNAME - The name of the database to connect to. The default is “postgres”.

8. SSL - The name of this user has to be specified in theUSERNAME text box.

9. DETAILED DIAGNOSIS – To make diagnosis more efficient and accurate, the eG Enterprise suite
embeds an optional detailed diagnostic capability. With this capability, the eG agents can be configured
to run detailed, more elaborate tests as and when specific problems are detected. To enable the
detailed diagnosis capability of this test for a particular server, choose the On option. To disable the
capability, click on theOff option.

The option to selectively enable/disable the detailed diagnosis capability will be available only if the
following conditions are fulfilled:

l The eGmanager license should allow the detailed diagnosis capability

l Both the normal and abnormal frequencies configured for the detailed diagnosis measures should not
be 0.

Configurable parameters for the test

Measurement Description Measurement
Unit Interpretation

Number of locks: Indicates the total number
of locks that are currently
held on the database
server.

Number A high value may indicate one of the
following:

l Toomany transactions happening

l Locked resources not being released

Measurements made by the test

Monitor ing the Pos tgreSQL Server

32

Measurement Description Measurement
Unit Interpretation

properly

l Locks are being held unnecessarily.

With the help of the detailed diagnosis of
this measure, you can determine the
query that is waiting for the lock, the
user who executed that query, the query
that is blocking, and the user who is
executing the blocking query. Once the
blocked and blocking queries are
isolated, you can then proceed to do
what’s required to release unnecessary
locks.

3.4.3 PostgreSQL Access Test

This test emulates a client executing a configured query on the database server, and in the process reports
whether the server is available, and if so, how quickly it responds to the client queries. The unavailability of a
network connection to the server and bottlenecks to responsiveness can thus be promptly isolated.

Target of the test : PostgreSQL server

Agent deploying the test: An external agent; if you are running this test using the external agent on the eG
manager box, then make sure that this external agent is able to communicate with the port on which the target
PostgreSQL server is listening. Alternatively, you can deploy the external agent that will be running this test
on a host that can access the port on which the target PostgreSQL server is listening.

Outputs of the test :One set of results for the target PostgreSQL server.

1. TEST PERIOD – How often should the test be executed.

2. HOST – The IP address of the server.

3. PORT – The port on which the server is listening. The default port is 5432.

4. USER – In order to monitor a PostgreSQL server, you need to manually create a special database user
account in every PostgreSQL database instance that requires monitoring. When doing so, ensure that
this user is vested with the superuser privileges. The sample script we recommend for user creation for
eGmonitoring is:

CREATE ROLE eguser LOGIN
ENCRYPTED PASSWORD {‘eguser password’}
SUPERUSER NOINHERIT NOCREATEDB NOCREATEROLE;

Configurable parameters for the test

Monitor ing the Pos tgreSQL Server

33

The name of this user has to be specified in theUSERNAME text box.

5. PASSWORD - The password associated with the above user name (can be ‘NULL’). Here, ‘NULL’
means that the user does not have any password.

6. CONFIRM PASSWORD – Confirm the PASSWORD (if any) by retyping it here.

7. DBNAME - The name of the database to connect to. The default is “postgres”.

8. INCLUDE DB - Specify a comma-separated list of databases that you wish tomonitor.

9. QUERY - Specify the select query to execute. The default is “select * from pg_ tables”. Every
DATABASE beingmonitored, should have a correspondingQUERY specification

10. SSL - The name of this user has to be specified in theUSERNAME text box.

Measurement Description Measurement
Unit Interpretation

Availability: Indicates whether the
database server is
currently available or not.

Percent The availability is 100% when the server is
responding to a request and 0% when it is
not. Availability problems may be caused
by a misconfiguration/malfunctioning of
the database server, or because the server
has not been started.

Response time: Indicates the time taken
by this database to
respond to a user query
during the last
measurement period.

Secs A sudden increase in response time is
indicative of a performance bottleneck at
the database server.

Measurements made by the test

3.4.4 PostgreSQL Long Queries Test

This test reports the number of queries that are executing for each database. Using this test, you can identify
the query that takes too long to execute and thus the resource-intensive queries to a database can be isolated
quickly.

Target of the test : PostgreSQL server

Agent deploying the test: An internal agent

Outputs of the test :One set of results for the target PostgreSQL server

1. TEST PERIOD – How often should the test be executed.

Configurable parameters for the test

Monitor ing the Pos tgreSQL Server

34

2. HOST – The IP address of the server.

3. PORT – The port on which the server is listening. The default port is 5432.

4. USER – In order to monitor a PostgreSQL server, you need to manually create a special database user
account in every PostgreSQL database instance that requires monitoring. When doing so, ensure that
this user is vested with the superuser privileges. The sample script we recommend for user creation for
eGmonitoring is:

CREATE ROLE eguser LOGIN
ENCRYPTED PASSWORD {‘eguser password’}
SUPERUSER NOINHERIT NOCREATEDB NOCREATEROLE;

The name of this user has to be specified in theUSERNAME text box.

5. PASSWORD - The password associated with the above user name (can be ‘NULL’). Here, ‘NULL’
means that the user does not have any password.

6. CONFIRM PASSWORD – Confirm the PASSWORD (if any) by retyping it here.

7. DBNAME - The name of the database to connect to. The default is “postgres”.

8. ELAPSED TIME - Specify the duration (in seconds) for which a query should have executed for it to be
regarded as a long running query. The default value is 10.

9. SSL - The name of this user has to be specified in theUSERNAME text box.

10. DETAILED DIAGNOSIS – To make diagnosis more efficient and accurate, the eG Enterprise suite
embeds an optional detailed diagnostic capability. With this capability, the eG agents can be configured
to run detailed, more elaborate tests as and when specific problems are detected. To enable the
detailed diagnosis capability of this test for a particular server, choose the On option. To disable the
capability, click on theOff option.

The option to selectively enable/disable the detailed diagnosis capability will be available only if the
following conditions are fulfilled:

l The eGmanager license should allow the detailed diagnosis capability

l Both the normal and abnormal frequencies configured for the detailed diagnosis measures should not
be 0.

Measurement Description Measurement
Unit Interpretation

Number of queries: Indicates the number of
queries currently executing
on the database server that
have been running for more
time than the configured
ELAPSED TIME.

Number The detailed diagnosis for this measure
indicates the exact queries and which
user is executing the queries. This
information can be very useful in
identifying queries that may be
candidates for optimization.

Measurements made by the test

Conclus ion

35

Conclusion
This document has described in detail the monitoring paradigm used and the measurement capabilities of the
eG Enterprise suite of products with respect toPostgreSQL servers. For details of how to administer and use
the eGEnterprise suite of products, refer to the user manuals.

We will be adding new measurement capabilities into the future versions of the eG Enterprise suite. If you can
identify new capabilities that you would like us to incorporate in the eG Enterprise suite of products, please
contact support@eginnovations.com. We look forward to your support and cooperation. Any feedback
regarding this manual or any other aspects of the eG Enterprise suite can be forwarded to
feedback@eginnovations.com.

mailto:support@eginnovations.com
mailto:feedback@eginnovations.com

	Introduction
	Administering the the eG Manager to monitor a PostgreSQL server
	Monitoring the PostgreSQL Server
	3.1 PostGreSQL I/O
	3.1.1 PostgreSQL Table I/O Test
	3.1.2 PostgreSQL Index I/O Test

	3.2 PostGreSQL Tablespaces
	3.2.1 PostgreSQL Tablespaces Test

	3.3 PostGreSQL Server
	3.3.1 PostgreSQL Background I/O Test
	3.3.2 PostgreSQL Databases Test
	3.3.3 PostgreSQL Indexes Test
	3.3.4 PostgreSQL Unused Indexes Test
	3.3.5 PostgreSQL Tables Test

	3.4 PostGreSQL Service
	3.4.1 PostgreSQL User Connections Test
	3.4.2 PostgreSQL Locks Test
	3.4.3 PostgreSQL Access Test
	3.4.4 PostgreSQL Long Queries Test

	Conclusion

