

Monitoring ASP .Net Servers

eG Enterprise v6

Restricted Rights Legend

The information contained in this document is confidential and subject to change without notice. No part of this

document may be reproduced or disclosed to others without the prior permission of eG Innovations Inc. eG

Innovations Inc. makes no warranty of any kind with regard to the software and documentation, including, but not

limited to, the implied warranties of merchantability and fitness for a particular purpose.

Trademarks

Microsoft Windows, Windows NT, Windows 2003, and Windows 2000 are either registered trademarks or trademarks

of Microsoft Corporation in United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Copyright

©2015 eG Innovations Inc. All rights reserved.

Table of Contents
MONITORING ASP .NET SERVERS ... 1

2.1 The ASP .Net CORE Layer .. 1

2.1.1 ASP .Net Workers Test ... 2

2.2 The ASP .Net CLR Layer ... 4

2.2.1 ASP Lock Threads Test .. 5

2.2.2 ASP .Net CLR ExceptionsTest ... 6

2.2.3 ASP .Net CLR GC Test .. 7

2.2.4 ASP CLR Load Test ... 8

2.2.5 Clr Lock Threads Test ... 10

2.2.6 Clr Security Test ... 12

2.2.7 AspNetClrJit Test .. 12

2.3 The ASP .Net Apps Layer ... 14

2.3.1 ASP .Net App Cache Test ... 14

2.3.2 ASP .Net App Compile Test ... 16

2.3.3 ASP .Net App Requests Test... 17

2.3.4 ASP .Net Applications Test .. 18

2.3.5 ASP Sql Clients Test ... 19

2.3.6 ASP .Net Sessions Test ... 20

2.3.7 ASP.Net SQL Data Provider Test ... 21

2.3.8 ASP .Net Oracle Data Provider Test ... 25

CONCLUSION ... 29

Table of Figures

Figure 1.1: The layer model of an ASP .Net server ... 1
Figure 1.2: The tests associated with the ASP .Net CORE Layer .. 2
Figure 1.3: The tests associated with the ASP .Net CLR layer .. 5
Figure 1.4: The tests associated with the ASP .Net Apps layer ... 14

MONITORING ASP .NET SERVERS

1

Monitoring ASP .Net
Servers
ASP .Net is a programming framework built on the common language runtime (CLR) that can be used on a server to

build powerful web applications, dynamic web sites, and mission-critical web services. To ensure the stability of

these web services, the ASP .Net framework should perform without a glitch. This is why continuous monitoring of

ASP .Net is important.

eG Enterprise has specially designed an ASP .Net monitoring model (see Figure 1.1) , which closely monitors the

performance of the ASP .Net framework from its core worker processes, to the language (i.e., CLR) on which it has

been built, to applications deployed on them, and accurately pin-points bottlenecks to optimal performance.

Figure 1.1: The layer model of an ASP .Net server

The sections to come will only discuss the top 3 layers of Figure 1.1, as the rest of the layers have already been

extensively discussed in the Monitoring Unix and Windows Servers document.

1.1 The ASP .Net CORE Layer
The test mapped to this layer (see Figure 1.2) monitors the performance of the worker process of the ASP .Net

server.

Chapter

1

MONITORING ASP .NET SERVERS

2

Figure 1.2: The tests associated with the ASP .Net CORE Layer

1.1.1 ASP .Net Workers Test

The AspNetWorkerTest reports statistics pertaining to the performance of the worker process of the ASP .Net server.

Purpose Reports statistics pertaining to the performance of the worker process of the ASP .Net servers

Target of the

test

The ASP .Net server

Agent

deploying the

test

An internal agent

Configurable

parameters for

the test

1. TEST PERIOD - How often should the test be executed

2. HOST - The host for which the test is to be configured

3. PORT - The port at which the specified HOST listens

Outputs of the

test

One set of results for the ASP .Net server being monitored

Measurements

made by the

test

Measurement
Measurement

Unit
Interpretation

Application restarts:

The number of application

restarts.

Number In a perfect world, the application domain will

and should survive for the life of the process.

Even if a single restart occurs, it is a cause

for concern because proactive and reactive

restarts cause automatic recycling of the

worker process. Moreover, restarts warrant

recreation of the application domain and

recompilation of the pages, both of which

consume a lot of time. To investigate the

reasons for a restart, check the values set in

the processModel configuration.

 Applications running:

The number of applications

currently running.

Number

MONITORING ASP .NET SERVERS

3

 Requests current:

The number of requests

currently handled by the

ASP.NET ISAPI. This

includes those that are

queued , executing, or

waiting to be written to the

client.

Number

 Request execution time:

The number of seconds

taken to execute the last

request.

Number In version 1.0 of the framework, the

execution time begins when the worker

process receives the request, and stop when

the ASP.NET ISAPI sends

HSE_REQ_DONE_WITH_SESSION to IIS. In

version 1.1 of the framework, execution

begins when the HttpContext for the request

is created, and stop before the response is

sent to IIS. The value of this measure should

be stable. Any sudden change from the

previous recorded values should be notified.

 Requests queued:

The number of requests

currently queued.

Number When running on IIS 5.0, there is a queue

between inetinfo and aspnet_wp, and there is

one queue for each virtual directory. When

running on IIS 6.0, there is a queue where

requests are posted to the managed

ThreadPool from native code, and a queue

for each virtual directory. This counter

includes requests in all queues. The queue

between inetinfo and aspnet_wp is a named

pipe through which the request is sent from

one process to the other. The number of

requests in this queue increases if there is a

shortage of available I/O threads in the

aspnet_wp process. On IIS 6.0 it increases

when there are incoming requests and a

shortage of worker threads.

 Requests rejected:

The number of rejected

requests

Number Requests are rejected when one of the queue

limits is exceeded. An excessive value of this

measure hence indicates that the worker

process is unable to process the requests due

to overwhelming load or low memory in the

processor.

MONITORING ASP .NET SERVERS

4

 Requests wait time:

The number of seconds

that the most recent

request spent waiting in

the queue, or named pipe

that exists between inetinfo

and aspnet_wp. This does

not include any time spent

waiting in the application

queues.

Secs

 Worker processes

running:

The current number of

aspnet_wp worker

processes

Number Every application executing on the .NET

server corresponds to a worker process.

Sometimes, during active or proactive

recycling, a new worker process and the

worker process that is being replaced may

coexist. Under such circumstances, a single

application might have multiple worker

processes executing for it. Therefore, if the

value of this measure is not the same as that

of Applications running, then it calls for closer

examination of the reasons behind the

occurence.

 Worker process

restarts:

The number of aspnet_wp

process restarts in the

machine

Number Process restarts are expensive and

undesirable. The values of this metric are

dependent upon the process model

configuration settings, as well as unforeseen

access violations, memory leaks, and

deadlocks.

1.2 The ASP .Net CLR Layer
The tests associated with this layer (see Figure 1.3) monitor the following:

 Managed locks and threads

 Exceptions that occur in the CLR

 Garbage collection activity

 The locking activity

 the security system activity

 JIT compilation

MONITORING ASP .NET SERVERS

5

Figure 1.3: The tests associated with the ASP .Net CLR layer

1.2.1 ASP Lock Threads Test
This test provides information about managed locks and threads that an application uses.

Purpose Provides information about managed locks and threads that an application uses

Target of the

test

An ASP .Net server

Agent

deploying the

test

An internal agent

Configurable

parameters for

the test

1. TEST PERIOD - How often should the test be executed

2. HOST - The host for which the test is to be configured

3. PORT - The port at which the specified HOST listens

Outputs of the

test

One set of results for the ASP .Net server being monitored

Measurements

made by the

test

Measurement
Measurement

Unit
Interpretation

Current logical threads:

The number of current

managed thread objects in

the application. This

measure maintains the

count of both running and

stopped threads.

Number

MONITORING ASP .NET SERVERS

6

 Current physical

threads:

The number of native

operating system threads

created and owned by the

common language runtime

to act as underlying

threads for managed

thread objects. This

measure does not include

the threads used by the

runtime in its internal

operations.

Number

 Current recognized

threads:

The number of threads that

are currently recognized by

the runtime. These threads

are associated with a

corresponding managed

thread object.

Number

 Contention rate:

The rate at which threads

in the runtime attempt to

acquire a managed lock

unsuccessfully.

Rate/Sec

 Current queue length:

The total number of

threads that are currently

waiting to acquire a

managed lock in the

application.

Number

1.2.2 ASP .Net CLR ExceptionsTest
This test reports statistics related to the exceptions that occur in the CLR due to managed and unmanaged

exceptions.

Purpose Reports statistics related to the exceptions that occur in the CLR due to managed and

unmanaged exceptions

Target of the

test

An ASP .Net server

Agent

deploying the

test

An internal agent

MONITORING ASP .NET SERVERS

7

Configurable

parameters for

the test

1. TEST PERIOD - How often should the test be executed

2. HOST - The host for which the test is to be configured

3. PORT - The port at which the specified HOST listens

Outputs of the

test

One set of results for every worker process on the ASP .Net server

Measurements

made by the

test

Measurement
Measurement

Unit
Interpretation

Clr exceptions:

The total number of

managed exceptions

thrown per second.

Exceptions/Sec Exceptions are very costly and can severely

degrade your application performance. A high

value of this measure is therefore an

indicator of potential performance issues.

1.2.3 ASP .Net CLR GC Test

This test monitors the memory allocation activity of the ASP .Net server, in terms of heaps when objects are created

and managed.

Purpose Monitors the memory allocation activity of the ASP .Net server

Target of the

test

An ASP .Net server

Agent

deploying the

test

An internal agent

Configurable

parameters for

the test

1. TEST PERIOD - How often should the test be executed

2. HOST - The host for which the test is to be configured

3. PORT - The port at which the specified HOST listens

Outputs of the

test

One set of results for every worker process on the ASP .Net server

Measurements

made by the

test

Measurement
Measurement

Unit
Interpretation

Heap mem usage:

The number of bytes

committed by managed

objects. This is the sum of

the large object heap and

the generation 0, 1, and 2

heaps.

MB

MONITORING ASP .NET SERVERS

8

 Gen 0 collections:

The rate at which the

generation 0 objects

(youngest; most recently

allocated) are garbage

collected (Gen 0 GC) since

the start of the application.

Collections/Sec

 Gen 1 collections:

The rate at which the

generation 1 objects have

been garbage collected

since the start of the

application. Objects that

survive are promoted to

generation 2.

Collections/Sec

 Gen 2 collections:

The number of seconds

taken to execute the last

request.

Number The number of times generation 2 objects

have been garbage collected since the start

of the application. Generation 2 is the

highest, thus objects that survive collection

remain in generation 2. Gen 2 collections can

be very expensive, especially if the size of the

Gen 2 heap is huge.

 Time in gc:

% Time in GC is the

percentage of elapsed time

that was spent in

performing a garbage

collection (GC) since the

last GC cycle.

Percent This measure is usually an indicator of the

work done by the Garbage Collector on

behalf of the application to collect and

conserve memory. This measure is updated

only at the end of every GC and the measure

reflects the last observed value; its not an

average.

1.2.4 ASP CLR Load Test

a. This test monitors the classes and assemblies loaded on to an ASP .Net application. A class is essentially

the blueprint for an object. It contains the definition for how a particular object will be instantiated at

runtime, such as the properties and methods that will be exposed publicly by the object and any internal

storage structures.

b. Also known as Managed DLLs, assemblies are the fundamental unit of deployment for the .NET platform.

The .NET Framework itself is made up of a number of assemblies, including mscorlib.dll, among others.

The assembly boundary is also where versioning and security are applied. An assembly contains

Intermediate Language generated by a specific language compiler, an assembly manifest (containing

information about the assembly), type metadata, and resources.

Purpose Monitors the classes and assemblies loaded on to an ASP .Net application

Target of the

test

An ASP .Net server

MONITORING ASP .NET SERVERS

9

Agent

deploying the

test

An internal agent

Configurable

parameters for

the test

1. TEST PERIOD - How often should the test be executed

2. HOST - The host for which the test is to be configured

3. PORT - The port at which the specified HOST listens

Outputs of the

test

One set of results for every worker process on the ASP .Net server being monitored

Measurements

made by the

test

Measurement
Measurement

Unit
Interpretation

Classes loaded:

Indicates the cumulative

number of classes loaded

in all assemblies since the

start of this application.

Number

 Current classes loaded:

Indicates the current

number of classes loaded

in all Assemblies.

Number An unusually high value may indicate a

sudden increase in classes which loaded on

to this .NET application.

 Rate of assemblies:

The rate at which

Assemblies were loaded

across all AppDomains.

Assembles/Sec If the Assembly is loaded as domain-neutral

from multiple AppDomains then this counter

is incremented once only. Assemblies can be

loaded as domain-neutral when their code

can be shared by all AppDomains or they can

be loaded as domain-specific when their code

is private to the AppDomain. This counter is

not an average over time; it displays the

difference between the values observed in

the last two samples divided by the duration

of the sample interval.

 Rate of classes loaded:

This rate at which the

classes loaded in all

Assemblies.

Classes/Sec This counter is not an average over time; it

displays the difference between the values

observed in the last two samples divided by

the duration of the sample interval.

 Rate of load failures:

The rate of load failures on

the application.

Failures/Sec This counter is not an average over time; it

displays the difference between the values

observed in the last two samples divided by

the duration of the sample interval. These

load failures could be due to many reasons

like inadequate security or illegal format.

 Current appdomains:

The number of

AppDomains currently

loaded in this application.

Number AppDomains (application domains) provide a

secure and versatile unit of processing that

the CLR can use to provide isolation between

applications running in the same process.

MONITORING ASP .NET SERVERS

10

 Current assemblies:

The number of assemblies

currently loaded across all

AppDomains in this

application.

Number If the Assembly is loaded as domain-neutral

from multiple AppDomains then this counter

is incremented once only. Assemblies can be

loaded as domain-neutral when their code

can be shared by all AppDomains or they can

be loaded as domain-specific when their code

is private to the AppDomain.

 Loader heap size:

The size of the memory

committed by the class

loader across all

AppDomains.

MB Committed memory is the physical memory

for which space has been reserved on the

disk paging file.

 Load failures:

The number of classes that

have failed to load during

the last measurement

period,

Number These load failures could be due to many

reasons like inadequate security or illegal

format.

 Appdomains loaded:

The number of

AppDomains loaded during

the last measurement

period.

Number

 Num assemblies:

The number of assemblies

loaded during the last

measurement period.

Number An assembly in ASP.NET is a collection of

single-file or multiple files. The assembly that

has more than one file contains either a

dynamic link library (DLL) or an EXE file. The

assembly also contains metadata that is

known as assembly manifest. The assembly

manifest contains data about the versioning

requirements of the assembly, author name

of the assembly, the security requirements

that the assembly requires to run, and the

various files that form part of the assembly.

The biggest advantage of using ASP.NET

Assemblies is that developers can create

applications without interfering with other

applications on the system.

1.2.5 Clr Lock Threads Test

This test monitors the thread locking activity on the ASP .Net server.

Purpose Monitors the thread locking activity on the ASP .Net server

Target of the

test

An ASP .Net server

Agent An internal agent

MONITORING ASP .NET SERVERS

11

deploying the

test

Configurable

parameters for

the test

1. TEST PERIOD - How often should the test be executed

2. HOST - The host for which the test is to be configured

3. PORT - The port at which the specified HOST listens

Outputs of the

test

One set of results for the ASP .Net server being monitored

Measurements

made by the

test

Measurement
Measurement

Unit
Interpretation

Queue length rate:

Indicates the rate at which

threads are waiting to

acquire some lock in the

application.

Threads/Sec

 Recognized threads

rate:

Indicates the number of

threads per second that

have been recognized by

the CLR.

Threads/Sec The recognized threads have a corresponding

.NET thread object associated with them.

These threads are not created by the CLR;

they are created outside the CLR but have

since run inside the CLR at least once. Only

unique threads are tracked; threads with the

same thread ID re-entering the CLR or

recreated after thread exit are not counted

twice.

 Queue length peak:

Indicates the total number

of threads that waited to

acquire some managed

lock during the last

measurement period.

Number A high turnover rate indicates that items are

being quickly added and removed, which can

be expensive.

 Recognized threads:

Indicates the total number

of threads that have been

recognized by the CLR

during the last

measurement period.

Number The recognized threads have a corresponding

.NET thread object associated with them.

These threads are not created by the CLR;

they are created outside the CLR but have

since run inside the CLR at least once. Only

unique threads are tracked; threads with the

same thread ID re-entering the CLR or

recreated after thread exit are not counted

twice.

 Contention threads:

Indicates the total number

of times threads in the CLR

have attempted to acquire

a managed lock

unsuccessfully.

Number Managed locks can be acquired in many

ways; by the lock statement in C# or by

calling System.Monitor.Enter or by using

MethodImplOptions.Synchronized custom

attribute.

MONITORING ASP .NET SERVERS

12

1.2.6 Clr Security Test

This test monitors the security system activity of the ASP .Net server.

Purpose Monitors the security system activity of the ASP .Net server

Target of the

test

An ASP .Net server

Agent

deploying the

test

An internal agent

Configurable

parameters for

the test

1. TEST PERIOD - How often should the test be executed

2. HOST - The host for which the test is to be configured

3. PORT - The port at which the specified HOST listens

Outputs of the

test

One set of results for the ASP .Net server being monitored

Measurements

made by the

test

Measurement
Measurement

Unit
Interpretation

Time in runtime checks:

Indicates the percentage of

elapsed time spent in

performing runtime Code

Access Security (CAS)

checks during the last

measurement period.

Percent If this counter is high, revisit what is being

checked and how often. The application may

be executing unnecessary stack walk depths.

Another cause for a high percentage of time

spent in runtime checks could be numerous

linktime checks.

 Stack walk depth:

Indicates the depth of the

stack during that last

measurement period.

Number

 Link time checks:

Indicates the total number

of linktime Code Access

Security (CAS) checks

during the last

measurement period.

Number The value displayed is not indicative of

serious performance issues, but it is

indicative of the health of the security system

activity.

 Runtime checks:

Indicates the total number

of runtime CAS checks

performed during the last

measurement period.

Number A high number for the total runtime checks

along with a high stack walk depth indicates

performance overhead.

1.2.7 AspNetClrJit Test

c. The CLR (Common Language Runtime) is the execution environment for code written for the .NET

Framework. The CLR manages the execution of .NET code, including memory allocation and garbage

MONITORING ASP .NET SERVERS

13

collection (which helps avoid memory leaks), security (including applying differing trust levels to code from

different sources), thread management, enforcing type-safety, and many other tasks.

d. The CLR works with every language available for the .NET Framework, so there is no need to have a

separate runtime for each language. Code developed in a .NET language is compiled by the individual

language compiler (such as the Visual Basic .NET compiler) into an intermediate format called

Intermediate Language (IL). At runtime, this IL code generated by the compiler is just-in-time (JIT)

compiled by the CLR into native code for the processor type the CLR is running on.

e. This AspNetClrJit test monitors the JIT compilation performed by the CLR. This compilation provides the

flexibility of being able to develop with multiple languages and target multiple processor types while still

retaining the performance of native code at execution time.

Purpose Monitors the JIT compilation performed by the CLR

Target of the

test

An ASP .Net server

Agent

deploying the

test

An internal agent

Configurable

parameters for

the test

1. TEST PERIOD - How often should the test be executed

2. HOST - The host for which the test is to be configured

3. PORT - The port at which the specified HOST listens

Outputs of the

test

One set of results for the ASP .Net server being monitored

Measurements

made by the

test

Measurement
Measurement

Unit
Interpretation

ASP .Net – Time in JIT:

Indicates the percentage of

elapsed time spent in JIT

compilation; a JIT

compilation phase is the

phase when a method and

its dependencies are being

compiled..

Percent

 ASP .Net – Data JIT

rate:

Indicates the rate at which

IL bytes are jitted.

KB/Sec

 ASP .Net – JIT failures:

Indicates the number of

methods the JIT compiler

has failed to JIT during the

last measurement period.

Number An unusually high value may indicate a

sudden increase in jit failures occured in the

application.

 ASP .Net – Data jitted:

Indicates the total IL bytes

jitted during the last

measurement period.

KB/Sec

MONITORING ASP .NET SERVERS

14

 ASP .Net – Methods

jitted:

Indicates the methods

compiled Just-In-Time (JIT)

by the CLR JIT compiler

during the last

measurement period.

Number AppDomains (application domains) provide a

secure and versatile unit of processing that

the CLR can use to provide isolation between

applications running in the same process.

1.3 The ASP .Net Apps Layer
The tests associated with this layer (see Figure 1.4) monitor the following:

 The application cache

 How well the appdomains perform during compilation

 How well the appdomains handle requests

 Performance of the applications deployed on the ASP .Net server

 Client connections to the ASP.Net server

 Sessions to the ASP .Net server

 The health of the interaction between the ASP .Net server and the MS SQL / Oracle database servers

via the respective .Net Framework Data Providers

Figure 1.4: The tests associated with the ASP .Net Apps layer

1.3.1 ASP .Net App Cache Test

This test monitors the performance of the ASP.NET Application (or Application Domain) Cache.

MONITORING ASP .NET SERVERS

15

Purpose Monitors the performance of the ASP.NET Application (or Application Domain) Cache

Target of the

test

An ASP .Net server

Agent

deploying the

test

An internal agent

Configurable

parameters for

the test

1. TEST PERIOD - How often should the test be executed

2. HOST - The host for which the test is to be configured

3. PORT - The port at which the specified HOST listens

Outputs of the

test

One set of results for every ASP .Net application/application domain cache on a monitored ASP

.Net server

Measurements

made by the

test

Measurement
Measurement

Unit
Interpretation

Cache total entries:

The current number of

entries in the cache (both

User and Internal).

Number

 Cache hit ratio:

The current hit-to-miss

ratio of all cache requests

(both user and internal).

Percent Physical I/O takes a significant amount of

time, and also increases the CPU resources

required. The server configuration should

therefore ensure that the required

information is available on the memory. A low

value of this measure indicates that physical

I/O is greater.

 Cache turnover rate

The number of additions

and removals to the cache

per second (both user and

internal).

Cached/Sec A high turnover rate indicates that items are

being quickly added and removed, which can

be expensive.

 Cache api entries:

The number of entries

currently in the user cache.

Number

 Cache user hit ratio:

Total hit-to-miss ratio of

user cache requests.

Percent A high value of this measure is indicative of

the good health of the server.

 Cache user turnover

rate:

The number of additions

and removals to the user

cache per second.

Cached/Sec A high turnover rate indicates that items are

being quickly added and removed, which can

be expensive.

MONITORING ASP .NET SERVERS

16

 Output cache entries:

The number of entries

currently in the Output

Cache.

Number

 Output cache hit ratio:

The total hit-to-miss ratio

of Output Cache requests

Percent A high value of this measure is a sign of good

health.

 Output cache turnover

rate:

The number of additions

and removals to the output

cache per second

Cached/Sec Output caching allows you to store dynamic

page and user control responses on any

HTTP 1.1 cache-capable device in the output

stream, from the originating server to the

requesting browser. On subsequent requests,

the page or user control code is not

executed; the cached output is used to

satisfy the request

Sudden increases in the value of this

measure are indicative of backend latency.

1.3.2 ASP .Net App Compile Test

This test reports how well the AppDomains perform during the compilation of the aspx, asmx, ascx or ashx files,

loading of assemblies, and execution of assemblies to generate the page.

Purpose Reports how well the AppDomains perform during the compilation of the aspx, asmx, ascx or

ashx files, loading of assemblies, and execution of assemblies to generate the page

Target of the

test

An ASP .Net server

Agent

deploying the

test

An internal agent

Configurable

parameters for

the test

1. TEST PERIOD - How often should the test be executed

2. HOST - The host for which the test is to be configured

3. PORT - The port at which the specified HOST listens

Outputs of the

test

One set of results for every ASP .Net application domain on a monitored ASP .Net server

Measurements

made by the
Measurement

Measurement

Unit
Interpretation

MONITORING ASP .NET SERVERS

17

test Compilation total:

The total number of

compilations that have

taken place during the

lifetime of the current Web

server process. This occurs

when a file with a .aspx,

.asmx, asax,.ascx, or .ashx

extension or code-behind

source files are dynamically

compiled on the server.

Number

 Processing errors:

The rate at which

configuration and parsing

errors occur.

Errors/Sec A consistent increase in the value of this

measure could prove to be fatal for the

application domain.

 Compilation errors:

The rate at which

compilation errors occur.

The response is cached,

and this counter

increments only once until

recompilation is forced by a

file change.

Errors/Sec

 Runtime errors:

The rate at which run-time

errors occur.

Errors/Sec

 Unhandled runtime

errors:

The rate of unhandled

runtime exceptions.

Errors/Sec A consistent increase in the value of this

measure could prove to be fatal for the

application domain. This measure however,

does not include the following:

 Errors cleared by an event handler

(for example, by Page_Error or

Application_Error)

 Errors handled by a redirect page

 Errors that occur within a try/catch

block

1.3.3 ASP .Net App Requests Test

This test monitors how well the application domain handles requests.

Purpose Monitors how well the application domain handles requests

MONITORING ASP .NET SERVERS

18

Target of the

test

An ASP .Net server

Agent

deploying the

test

An internal agent

Configurable

parameters for

the test

1. TEST PERIOD - How often should the test be executed

2. HOST - The host for which the test is to be configured

3. PORT - The port at which the specified HOST listens

Outputs of the

test

One set of results for every ASP .Net application domain on a monitored ASP .Net server

Measurements

made by the

test

Measurement
Measurement

Unit
Interpretation

Requests executing:

The number of requests

currently executing.

Number This measure is incremented when the

HttpRuntime begins to process the request

and is decremented after the HttpRuntime

finishes the request.

 Requests app queue:

The number of requests

currently in the application

request queue.

Number

 Requests not found:

The number of requests

that did not find the

required resource.

Number

 Requests not

authorized:

The number of request

failed due to unauthorized

access.

Number Values greater than 0 indicate that proper

authorization has not been provided, or

invalid authors are trying to access a

particular resource.

 Requests timed out:

The number of requests

timed out.

Number

 Requests succeeded:

The rate at which requests

succeeded

Requests/Sec

1.3.4 ASP .Net Applications Test

This test reports key statistics pertaining to applications deployed on the ASP .Net server.

Purpose Reports key statistics pertaining to applications deployed on the ASP .Net server

Target of the

test

An ASP .Net server

MONITORING ASP .NET SERVERS

19

Agent

deploying the

test

An internal agent

Configurable

parameters for

the test

1. TEST PERIOD - How often should the test be executed

2. HOST - The host for which the test is to be configured

3. PORT - The port at which the specified HOST listens

Outputs of the

test

One set of results for the ASP .Net server being monitored

Measurements

made by the

test

Measurement
Measurement

Unit
Interpretation

Request rate:

Indicates the number of

requests executed per

second.

Number This represents the current throughput of the

application.

 Pipeline instances:

Indicates the number of

active pipeline instances for

the ASP.NET application.

Number Since only one execution thread can run

within a pipeline instance, this number gives

the maximum number of concurrent requests

that are being processed for a given

application. Ideally, the value of this measure

should be low.

 Number of errors:

Indicates the total sum of

all errors that occur during

the execution of HTTP

requests.

Number This measure should be kept at 0 or a very

low value.

1.3.5 ASP Sql Clients Test

This test reports metrics pertaining to client connections to the ASP .Net server.

Purpose Reports metrics pertaining to client connections to the ASP .Net server

Target of the

test

An ASP .Net server

Agent

deploying the

test

An internal agent

Configurable

parameters for

the test

1. TEST PERIOD - How often should the test be executed

2. HOST - The host for which the test is to be configured

3. PORT - The port at which the specified HOST listens

Outputs of the

test

One set of results for the ASP .Net server being monitored

MONITORING ASP .NET SERVERS

20

Measurements

made by the

test

Measurement
Measurement

Unit
Interpretation

Connection pool size:

Indicates the number of

connection pools that have

been created.

Number If the connection pool maxes out while new

connection requests are still coming in, you

willl see connection requests refused,

apparently at random. The cure in this case is

simply to specify a higher value for the Max

Pool Size property.

 Number of connections:

Indicates the number of

connections currently in the

pool.

Number

 Pooled connections:

Indicates the number of

connections that have been

pooled.

Number

 Pooled connections

peak:

Indicates the highest

number of connections that

have been used.

Number If the value of this measure is at the Max

Pool Size value, and the value of the Failed

connects measure increases while the

application is running, you might have to

consider increasing the size of the connection

pool.

 Failed connects:

Indicates the number of

connection attempts that

have failed.

Number If the connection pool maxes out while new

connection requests are still coming in, you

willl see connection requests refused,

apparently at random. The cure in this case is

simply to specify a higher value for the Max

Pool Size property.

1.3.6 ASP .Net Sessions Test

This test monitors the sessions on the ASP .Net server.

Purpose Monitors the sessions on the ASP .Net server

Target of the

test

The ASP .Net objects

Agent

deploying the

test

An internal agent

Configurable

parameters for

the test

1. TEST PERIOD - How often should the test be executed

2. HOST - The host for which the test is to be configured

3. PORT - The port at which the specified HOST listens

Outputs of the

test

One set of results for the ASP .Net server being monitored

MONITORING ASP .NET SERVERS

21

Measurements

made by the

test

Measurement
Measurement

Unit
Interpretation

SQL connections:

Indicates the number of

connections to the SQL

Server used by session

state.

Number An unusually high value may indicate a

sudden increase in sessions to the SQL

Server.

 State server

connections:

Indicates the number of

connections to the

StateServer used by

session state.

Number An unusually high value may indicate a

sudden increase in sessions to the

StateServer.

 Abandoned ASPNet

application sessions:

Indicates the number of

sessions that have been

explicitly abandoned during

the last measurement

period.

Number

 Active ASPNet

application sessions:

Indicates the currently

active sessions.

Number

 Timedout ASPNet

application sessions:

Indicates the number of

sessions that timed out

during the last

measurement period.

Number

 ASPNet application

sessions:

Indicates the total number

of sessions during the last

measurement period.

Number

f.

1.3.7 ASP.Net SQL Data Provider Test

A data provider in the .NET Framework serves as a bridge between an application and a data source. A .NET

Framework data provider enables you to return query results from a data source, execute commands at a data

source, and propagate changes in a DataSet to a data source.

The .Net Data Provider for SQL Server allows you to connect to a Microsoft SQL Server 7.0, 2000, and 2005

databases, and perform the above-mentioned operations. This test reports many useful metrics that shed light on the

health of the interactions between the ASP .Net sever and the SQL server.

MONITORING ASP .NET SERVERS

22

Purpose Shed light on the health of the interactions between the ASP .Net sever and the SQL server

Target of the

test

The ASP .Net server

Agent

deploying the

test

An internal agent

Configurable

parameters for

the test

1. TEST PERIOD - How often should the test be executed

2. HOST - The host for which the test is to be configured

3. PORT - The port at which the specified HOST listens

Outputs of the

test

One set of results for the ASP .Net server being monitored

Measurements

made by the

test

Measurement
Measurement

Unit
Interpretation

Hard connects:

Indicates the number of

actual connections per

second that are being

made to a database server.

Connects/Sec

 Hard disconnects:

Indicates the number of

actual disconnects per

second that are being

made to a database server.

Disconnects/Sec

 Active connection pool

groups:

Indicates the number of

currently active connection

pool groups.

Number The value of this measure is controlled by the

number of unique connection strings that are

found in the AppDomain.

MONITORING ASP .NET SERVERS

23

 Active connection pools:

Indicates the number of

connection pools that are

currently active.

Number When a connection is first opened, a

connection pool is created based on matching

criteria that associates the pool with the

connection string in the connection. Each

connection pool is associated with a distinct

connection string. If the connection string is

not an exact match to an existing pool when

a new connection is opened, a new pool is

created. Connections are pooled per process,

per application domain, per connection string,

and, when integrated security is used, per

Windows identity.

When using Windows Authentication

(integrated security), both the Active

connection pool groups and Active connection

pools measures are significant. The reason is

that connection pool groups map to unique

connection strings. When integrated security

is used, connection pools map to connection

strings and additionally create separate pools

for individual Windows identities. For

example, if Fred and Julie, each within the

same AppDomain, both use the connection

string "Data Source=MySqlServer;Integrated

Security=true", a connection pool group is

created for the connection string, and two

additional pools are created, one for Fred and

one for Julie. If John and Martha use a

connection string with an identical SQL

Server login, "Data Source=MySqlServer;User

Id=lowPrivUser;Password=Strong?Password",

then only a single pool is created for the

lowPrivUser identity.

 Active connections:

Indicates the number of

connections that are

currently in use.

Number

 Free connections:

Indicates the count of

unused connections.

Number Ideally, the value of this measure. A very low

value indicates excessive connection usage.

 Inactive connection

pools:

Indicates the number of

connection pools that have

had no recent activity and

are waiting to be disposed.

Number

MONITORING ASP .NET SERVERS

24

 Inactive connection

pool groups:

Indicates the number of

inactive connection pool

groups that were waiting to

be deactivated i.e., to be

pruned.

Number

 Non-pooled

connections:

Indicates the number of

active connections that are

not using any of the

connection pools.

Number

 Pooled connections:

Indicates the number of

connections that are

managed by the connection

pooler.

Number

 Reclaimed connections:

Indicates the number of

connections that have been

reclaimed through garbage

collection where Close or

Dispose was not called by

the application.

Number Not explicitly closing or disposing connections

hurts performance.

 Waiting connections:

Indicates the number of

connections that are

currently awaiting

completion of an action and

are therefore unavailable

for use by any other

application.

Number

 Soft connects:

Indicates the rate at which

connections are pulled from

the connection pool.

Connects/Sec

 Soft disconnects:

Indicates the rate at which

connections are returned to

the connection pool.

Disconnects/Sec

MONITORING ASP .NET SERVERS

25

1.3.8 ASP .Net Oracle Data Provider Test

A data provider in the .NET Framework serves as a bridge between an application and a data source. A .NET

Framework data provider enables you to return query results from a data source, execute commands at a data

source, and propagate changes in a DataSet to a data source.

The Oracle Data Provider for .NET (ODP.NET) features optimized data access to the Oracle database from a .NET

environment. ODP.NET allows developers to take advantage of advanced Oracle database functionality, including

Real Application Clusters, XML DB, and advanced security. The data provider can be used from any .NET language,

including C# and Visual Basic .NET.

This test reports many useful metrics that shed light on the health of the interactions between the ASP .Net sever

and the Oracle database server.

Purpose Sheds light on the health of the interactions between the ASP .Net sever and the Oracle

database server

Target of the

test

The ASP .Net server

Agent

deploying the

test

An internal agent

Configurable

parameters for

the test

1. TEST PERIOD - How often should the test be executed

2. HOST - The host for which the test is to be configured

3. PORT - The port at which the specified HOST listens

Outputs of the

test

One set of results for the ASP .Net server being monitored

Measurements

made by the

test

Measurement
Measurement

Unit
Interpretation

Hard connects:

Indicates the number of

actual connections per

second that are being

made to a database server.

Connects/Sec

 Hard disconnects:

Indicates the number of

actual disconnects per

second that are being

made to a database server.

Disconnects/Sec

 Active connection pool

groups:

Indicates the number of

currently active connection

pool groups.

Number The value of this measure is controlled by the

number of unique connection strings that are

found in the AppDomain.

MONITORING ASP .NET SERVERS

26

 Active connection pools:

Indicates the number of

currently active connection

pools.

Number When a connection is first opened, a

connection pool is created based on matching

criteria that associates the pool with the

connection string in the connection. Each

connection pool is associated with a distinct

connection string. If the connection string is

not an exact match to an existing pool when

a new connection is opened, a new pool is

created. Connections are pooled per process,

per application domain, per connection string,

and, when integrated security is used, per

Windows identity.

When using Windows Authentication

(integrated security), both the Active

connection pool groups and Active connection

pools measures are significant. The reason is

that connection pool groups map to unique

connection strings. When integrated security

is used, connection pools map to connection

strings and additionally create separate pools

for individual Windows identities. For

example, if Fred and Julie, each within the

same AppDomain, both use the connection

string "Data Source=MySqlServer;Integrated

Security=true", a connection pool group is

created for the connection string, and two

additional pools are created, one for Fred and

one for Julie. If John and Martha use a

connection string with an identical SQL

Server login, "Data Source=MySqlServer;User

Id=lowPrivUser;Password=Strong?Password",

then only a single pool is created for the

lowPrivUser identity.

 Active connections:

Indicates the number of

connections that are

currently in use.

Number

 Free connections:

Indicates the count of

unused connections.

Number Ideally, the value of this measure. A very low

value indicates excessive connection usage.

 Inactive connection

pools:

Indicates the number of

connection pools that have

had no recent activity and

are waiting to be disposed.

Number

MONITORING ASP .NET SERVERS

27

 Inactive connection

pool groups:

Indicates the number of

inactive connection pool

groups that were waiting to

be deactivated i.e., to be

pruned.

Number

 Non-pooled

connections:

Indicates the number of

active connections that are

not using any of the

connection pools.

Number

 Pooled connections:

Indicates the number of

connections that are

managed by the connection

pooler.

Number

 Reclaimed connections:

Indicates the number of

connections that have been

reclaimed through garbage

collection where Close or

Dispose was not called by

the application.

Number Not explicitly closing or disposing connections

hurts performance.

 Waiting connections:

Indicates the number of

connections that are

currently awaiting

completion of an action and

are therefore unavailable

for use by any other

application.

Number

MONITORING ASP .NET SERVERS

28

 Soft connects:

Indicates the rate at which

connections are pulled from

the connection pool.

Connects/Sec

 Soft disconnects:

Indicates the rate at which

connections are returned to

the connection pool.

Disconnects/Sec

CONCLUSION

29

Conclusion
This document has described in detail the monitoring paradigm used and the measurement capabilities of the eG

Enterprise suite of products with respect to ASP .Net servers. For details of how to administer and use the eG

Enterprise suite of products, refer to the user manuals.

We will be adding new measurement capabilities into the future versions of the eG Enterprise suite. If you can

identify new capabilities that you would like us to incorporate in the eG Enterprise suite of products, please contact

support@eginnovations.com. We look forward to your support and cooperation. Any feedback regarding this manual

or any other aspects of the eG Enterprise suite can be forwarded to feedback@eginnovations.com.

Chapter

2

mailto:support@eginnovations.com

	1. Monitoring ASP .Net Servers
	1.1 The ASP .Net CORE Layer
	1.1.1 ASP .Net Workers Test

	1.2 The ASP .Net CLR Layer
	1.2.1 ASP Lock Threads Test
	1.2.2 ASP .Net CLR ExceptionsTest
	1.2.3 ASP .Net CLR GC Test
	1.2.4 ASP CLR Load Test
	1.2.5 Clr Lock Threads Test
	1.2.6 Clr Security Test
	1.2.7 AspNetClrJit Test

	1.3 The ASP .Net Apps Layer
	1.3.1 ASP .Net App Cache Test
	1.3.2 ASP .Net App Compile Test
	1.3.3 ASP .Net App Requests Test
	1.3.4 ASP .Net Applications Test
	1.3.5 ASP Sql Clients Test
	1.3.6 ASP .Net Sessions Test
	1.3.7 ASP.Net SQL Data Provider Test
	1.3.8 ASP .Net Oracle Data Provider Test

	2. Conclusion

