

Using the eG Integration Console

eG Enterprise v6

Restricted Rights Legend

The information contained in this document is confidential and subject to change without notice. No part of

this document may be reproduced or disclosed to others without the prior permission of eG Innovations,

Inc. eG Innovations, Inc. makes no warranty of any kind with regard to the software and documentation,

including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Trademarks

Microsoft Windows, Windows NT, Windows 2003, and Windows 2000 are either registered trademarks or

trademarks of Microsoft Corporation in United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective

owners.

Copyright

© 2015 eG Innovations, Inc. All rights reserved.

The copyright in this document belongs to eG Innovations, Inc. Complying with all applicable copyright laws

is the responsibility of the user.

Table of Contents

INTRODUCTION .. 1

1.1 The Integration Console Architecture ... 1

1.2 System Requirements .. 2

1.3 Licensing ... 2

ADDING/MODIFYING TESTS USING THE INTEGRATION CONSOLE ... 4

2.1 Adding a Custom Test... 5

2.1.1 Adding a Custom Performance Test ... 5

2.1.2 Adding a Custom Configuration Test ... 18

2.1.3 Test Generator API ... 23

2.2 Adding a Script/Batch File-based Test .. 39

2.3 Adding an SQL Query/Stored Procedure-based Test .. 45

2.3.1 Using a SQL Query ... 45

2.3.2 Using Stored Procedure... 49

2.4 Adding a Perfmon-based Test ... 54

2.5 Adding an SNMP-based Test .. 60

2.5.1 Adding a Non-Descriptor-Based SNMP Test ... 60

2.5.2 Adding a Descriptor-based SNMP Test .. 67

2.6 Adding a JMX-based Test ... 74

2.6.1 Enabling JMX Support for the JRE of the Target Application .. 75

2.6.2 Adding a New Jmx Test .. 85

2.7 Modifying/Deleting Tests Added Using the Integration Console ... 99

2.8 Adding Help Pages for the New Test .. 104

2.8.1 Creating New Help Pages Using the Integration Console ... 105

2.8.2 Uploading Help Pages that Pre-exist to the eG Manager .. 111

ADDING/MODIFYING LAYERS USING THE INTEGRATION CONSOLE ... 113

3.1 Adding a New Layer and Associating Tests with the User-Defined Layer ... 113

3.2 Associating Tests with a Pre-defined Layer .. 116

ADDING/MODIFYING NEW COMPONENT TYPES USING THE INTEGRATION CONSOLE 118

4.1 Creating a New Component-type Using the Integration Console ... 119

4.2 Building a Layer Model for a New Component Type ... 121

4.3 Associating/Disassociating Tests from a New Component Type .. 124

BACKING UP AND RESTORING THE CONFIGURATION OF EG ENTERPRISE... 128

CONCLUSION ... 129

Table of Figures

Figure 1.1: Architecture of the eG Integration Console ... 2
Figure 2.1: Selecting the Test option from the Integration Console tile... 6
Figure 2.2: List of user-defined tests that pre-exist .. 6
Figure 2.3: A message box stating that the test name should end with “_ex” .. 7
Figure 2.4: Specifying the inputs corresponding to a new Custom test ... 7
Figure 2.5: Duplicating a test .. 7
Figure 2.6: The Parameter tab page ... 8
Figure 2.7: Adding a new test parameter ... 9
Figure 2.8: The Measure tab page indicating that measures are yet to be configured for the MsFileTest_ex .. 11
Figure 2.9: Adding a new measure .. 11
Figure 2.10: A message box requesting you to confirm whether/not you want to add more measures for the MsFileTest_ex 13
Figure 2.11: Adding the second measure of the MsFileTest_ex .. 13
Figure 2.12: Specifying a test’s implementation ... 14
Figure 2.13: Uploading the class file to the eG manager ... 14
Figure 2.14: Viewing the measures of the MsFileTest_ex ... 15
Figure 2.15: Configuring the thresholds for a measure of the MsFileTest_ex ... 15
Figure 2.16: Configuring detailed diagnosis for the MsFileTest_ex .. 16
Figure 2.17: The Detailed Diagnosis tab page ... 16
Figure 2.18: Configuring detailed diagnosis for the File_locks_count measure of the MsFileTest_ex .. 17
Figure 2.19: A summary of the detailed diagnosis specification of the MsFileTest_ex ... 17
Figure 2.20: Specifying the detailed diagnosis implementation... 18
Figure 2.21: Adding a descriptor-based configuration test .. 18
Figure 2.22: Specifying the parameters of the new test ... 19
Figure 2.23: Configuring the first measure for the configuration test .. 19
Figure 2.24: A message box requesting your confirmation to continue adding measures for the NetShare_cf_ex test .. 20
Figure 2.25: Adding the second measure of the NetShare_cf_ex test .. 20
Figure 2.26: Generating a test.. 20
Figure 2.27: Adding a new non-descriptor-based test.. 21
Figure 2.28: Viewing the details of the non-descriptor-based test ... 21
Figure 2.29: Clicking the Add New Measure button to add a new measure for the NetShareCount_cf_ex test ... 22
Figure 2.30: Configuring the No_of_share_folders measure of the NetShareCount_cf_ex test ... 22
Figure 2.31: A message box requesting your confirmation to continue adding measures for the NetShareCount_cf_ex test 22
Figure 2.32: Generating the non-descriptor-based test .. 23
Figure 2.33: Architecture of eG’s test generator API .. 24
Figure 2.34: Providing the details of the new test of type Script/Batch File .. 40
Figure 2.35: The Parameter tab page of the DiskSpaceTest_ex ... 40
Figure 2.36: The Measure tab page of the DiskSpaceTest_ex ... 40
Figure 2.37: Specification of a measure (PercentUtil) of the DiskSpaceTest_ex ... 41
Figure 2.38: A message box requesting your confirmation to continue adding measures for the NetShare_cf_ex test .. 42
Figure 2.39: Generating a test of type Script/Batch File .. 42
Figure 2.40: Specifying the threshold values of the measures of the DiskSpaceTest_ex ... 45
Figure 2.41: Providing the new test details .. 46
Figure 2.42: Modifying the details of the SqlTest_ex .. 47
Figure 2.43: The Measure tab page reporting that no measures have been configured for the SQL query-based test .. 47
Figure 2.44: Adding the CurrentUsers measure for the SQL query-based test .. 47
Figure 2.45: Specifying the Sql query associated with the SqlTest_ex .. 48
Figure 2.46: Specifying the threshold values of the CurrentUsers measure ... 49
Figure 2.47: Providing the details of the SQL stored procedure-based test ... 50
Figure 2.48: Adding a new test parameter for the SQL stored procedure-based test ... 50
Figure 2.49: Reviewing the parameter specification of the SQL stored procedure-based test ... 50
Figure 2.50: The Measure tab page indicating that no measures have been configured yet for the SQL stored procedure-based test 51
Figure 2.51: Adding the Avg_cpu_util measure of the SQL stored procedure-based test .. 51
Figure 2.52: Specifying the stored procedure associated with the Ag_cpu_util measure ... 52
Figure 2.53: Specifying the threshold values of the Avg_cpu_util measure .. 54
Figure 2.54: Adding a new test of type Perfmon ... 55
Figure 2.55: The Parameter tab page that appears when configuring a test of type Perfmon .. 56
Figure 2.56: The Measure tab page indicating that no measures have been configured yet for the Perfmon Test ... 56
Figure 2.57: Specification of the first output (Privileged_Time) of the ProcessorTest_ex of type Perfmon .. 57
Figure 2.58: The Add Counters dialog box ... 57
Figure 2.59: Specifying the object and instance names associated with the measures ... 58
Figure 2.60: Configuring the implementation of the Perfmon test ... 58
Figure 2.61: The Add Counters dialog box with a Performance object selected .. 59
Figure 2.62: Specifying the threshold values for the measures of the ProcessorTest_ex ... 60
Figure 2.63: Adding a new test of type Snmp.. 61
Figure 2.64: Viewing a summary of the details of the BaySwitchTest_ex .. 61

Figure 2.65: Specification of the No_of_services measure for the BaySwitchTest_ex .. 62
Figure 2.66: A portion of the MIB tree of the Bay switch ... 63
Figure 2.67: The MIB Browser ... 65
Figure 2.68: Specifying the full path to the MIB file to be uploaded ... 65
Figure 2.69: The MIB Files list displaying the newly uploaded MIB file .. 66
Figure 2.70: Expanding the MIB tree to figure out the OID of the No_of_services measure .. 66
Figure 2.71: Generating the test of type SNMP ... 67
Figure 2.72: Configuring thresholds for the non-descriptor-based SNMP test newly created ... 67
Figure 2.73: Adding a descriptor-based test of type SNMP ... 68
Figure 2.74: Viewing the default parameters of the TuxedoDomainTest_ex ... 69
Figure 2.75: The Measure tab page indicating that no measures have been configured yet for the descriptor-based SNMP test 69
Figure 2.76: Adding the Curr_machines measure to the eG Enterprise system ... 70
Figure 2.77: A portion of the MIB for the Tuxedo domain server ... 71
Figure 2.78: Adding the Curr_servers measure to the eG Enterprise system ... 73
Figure 2.79: Configuring a descriptor-based TuxedoDomainTest_ex ... 73
Figure 2.80: Configuring thresholds for the measures of the descriptor-based SNMP test .. 74
Figure 2.81: Selecting the Properties option .. 78
Figure 2.82: The Properties dialog box ... 78
Figure 2.83: Deselecting the ‘Use simple file sharing’ option ... 79
Figure 2.84: Clicking the Advanced button ... 79
Figure 2.85: Verfying whether the Owner of the file is the same as the application Owner .. 80
Figure 2.86: Disinheriting permissions borrowed from a parent directory .. 81
Figure 2.87: Copying the inherited permissions .. 81
Figure 2.88: Granting full control to the file owner ... 82
Figure 2.89: Scrolling down the jmxremote.password file to view 2 commented entries .. 83
Figure 2.90: The jmxremote.access file ... 83
Figure 2.91: Uncommending the ‘controlRole’ line .. 84
Figure 2.92: Appending a new username password pair.. 84
Figure 2.93: Assigning rights to the new user in the jmxremote.access file .. 85
Figure 2.94: Adding a new JMX test ... 85
Figure 2.95: Viewing the default parameters of the Jmx test ... 86
Figure 2.96: Adding a new measure for the new Jmx test ... 87
Figure 2.97: Configuring the auto-discovery of MBeans ... 87
Figure 2.98: Selecting a domain for MBean discovery .. 88
Figure 2.99: Adding the Heap_memory_used measure of the Jmx test using the MBean auto-discovery method .. 90
Figure 2.100: Selecting the option to load MBeans from a file ... 92
Figure 2.101: Browsing for the file and uploading it ... 92
Figure 2.102: The path to which the MBean file is uploaded being displayed against Path of the file .. 92
Figure 2.103: Configuring the Heap_memory_used measure by loading MBeans from a file uploaded to the eG manager 93
Figure 2.104: Using an existing MBean file .. 94
Figure 2.105: Selecting a domain from the domains discovered from an existing MBean file .. 94
Figure 2.106: Adding the Heap_memory_used measure by discovering domains from an existing MBean file ... 95
Figure 2.107: Configuring the Heap_memory_used measure manually .. 95
Figure 2.108: Jconsole ... 97
Figure 2.109: Drilling down to the ‘used’ attribute ... 98
Figure 2.110: Generating the Jmx test ... 99
Figure 2.111: Defining the thresholds for the measures configured for the JavaHeapMemory_ex test ... 99
Figure 2.112: List of tests that pre-exist .. 100
Figure 2.113: A message box that appears requesting your confirmation to delete a test .. 100
Figure 2.114: Modifying a test’s specification .. 100
Figure 2.115: Adding/modifying test parameters .. 101
Figure 2.116: Modifying a user-defined parameter ... 101
Figure 2.117: Viewing the default parameters of an Snmp test ... 101
Figure 2.118: Modifying the default value of a default parameter ... 102
Figure 2.119: Viewing the measures configured for a test ... 102
Figure 2.120: Modifying a measure ... 103
Figure 2.121: Modifying the test implementation .. 103
Figure 2.122: A warning message that appears when a test is modified and regenerated .. 104
Figure 2.123: A message box requesting your confirmation to define a help page for the new test... 105
Figure 2.124: The Help tab page ... 105
Figure 2.125: The strings containing instructions on how to edit the Admin template .. 106
Figure 2.126: The edited HTML block in the Admin template.. 107
Figure 2.127: The strings containing instructions on how to edit the Monitor template .. 109
Figure 2.128: The edited HTML block in the Monitor template .. 109
Figure 2.129: Modifying a help page created using the Integration Console ... 111
Figure 2.130: Uploading the help pages .. 111
Figure 3.1: Viewing the list of pre-defined and user-defined layers. ... 114
Figure 3.2: Adding a new layer ... 114
Figure 3.3: Duplicating a layer .. 115
Figure 3.4: The new layer listed in the User defined layers panel ... 115

Figure 3.5: Selecting the test to be associated with the user-defined layer .. 116
Figure 3.6: A message box requesting your confirmation to associate the test with all components tha tsupport the chosen layer 116
Figure 3.7: Selecting the test to be associated with a pre-defined layer ... 117
Figure 3.8: A message box requesting your confirmation to associate the test with all components tha tsupport the chosen layer 117
Figure 4.1: Viewing the user-defined and pre-defined component types ... 119
Figure 4.2: Adding a new component type using Integration Console .. 119
Figure 4.3: Duplicating a component type ... 120
Figure 4.4: The User-defined components panel displaying the newly added component-type ... 120
Figure 4.5: Modifying the details of a user-defined component-type .. 121
Figure 4.6: Selecting the layer to be associated with the new component-type ... 122
Figure 4.7: Associating a layer with a new component-type ... 122
Figure 4.8: Associating multiple layers with the new component-type ... 123
Figure 4.9: An error message prompting you to change the position of the Operating System layer ... 123
Figure 4.10: Selecting the tests to be disassociated from the new component-type ... 125
Figure 4.11: Disassociating tests for a component-type... 125
Figure 4.12: Selecting the configuration tests to be associated with a new component-type ... 126
Figure 5.1: Backing up/Restoring the configurations performed using IC ... 128

Int roduct ion

1

Introduction
eG Enterprise includes extensive built-in monitoring capabilities for a majority of off-the-shelf applications. However,

in any realistic environment, one may encounter applications that are not supported by the eG products. Moreover,

administrators may prefer to extend eG’s built-in application models to suit their needs and preferences (e.g., to add

specific tests from the model). This chapter is intended for users who want to customize and extend eG’s monitoring

capabilities for their target environment.

To support these capabilities, eG Enterprise includes the Integration Console. This is a GUI-based component of the

eG manager that allows users to add new servers for monitoring, include new layers for diagnosing specific

components, and enhance eG’s measurement capability to expose additional information relating to the managed

components.

The key features of the Integration Console are:

 Customized monitoring capabilities: Monitor new and custom applications or network elements.

Modify eG’s built-in models to suit the specific requirements of the target infrastructure.

 Integrated, end-to-end monitoring: Monitor the entire target infrastructure; A single integrated

interface from where out -of-the-box and custom applications can be monitored.

 Seamless integration: Custom applications or network elements are integrated into the eG

Enterprise system in the same manner as out-of-the-box applications/network elements. Custom

measurements can be made, thresholds computed, and the status of the custom applications can be

displayed using eG’s web-based monitoring interface.

 Complete flexibility in the integration: Integrate a custom application/network element into the

eG Enterprise system by choosing any approach that is suitable for the target application/network

element. Simple, easy to use templates allow users to develop new monitoring capabilities by reading

statistics logged into a file, using SNMP, by invoking application-specific APIs, using OS-level scripting,

by accessing custom databases, etc.

 Auto-upgrade of the agents: No need to bother about manually updating all of the agents.

Register the new application/network element to be monitored with the eG manager and have the

agents automatically discover and implement the new monitoring capabilities, without needing any

manual intervention!

The following sections go into details of the usage of the Integration Console.

1.1 The Integration Console Architecture
Figure 1.1 depicts the architecture of the Integration Console (IC). A user interacts with the Integration Console to

enhance eG’s models of applications. This process may involve enhancements to existing models of applications or

adding new models. In either case, the eG database where measurement results and state information regarding the

Int roduct ion

2

various servers monitored is stored has to be updated. In addition to updating the database schema when required,

the Integration Console is responsible for updating the configuration information that is maintained by the eG

manager.

A test is an object that is invoked by an eG agent periodically to report measures pertaining to a particular

component (e.g., web server, network router, database, etc.). These tests can report performance metrics or the

configuration information pertaining to the monitored targets. New tests can be added and configured for use by the

eG agents using the Integration Console. To enable an agent to implement the new test(s), the Integration Console

includes a mechanism through which the agents can automatically discover the addition of new tests to the eG

Enterprise system and can enhance their capabilities to start performing the new tests.

Figure 1.1: Architecture of the eG Integration Console

1.2 System Requirements
The eG Integration Console is a manager-side component, and is included as part of eG Enterprise. The system

requirements for the Integration Console are the same as the requirements for the eG manager (i.e., the Integration

Console does not have any special requirements).

1.3 Licensing
The eG Integration Console is enabled as an optional component of the eG manager. To see if this capability is

enabled for your target environment, login to the eG administration console. If you find an Integration Console tile,

in the Admin tile menu, it is a clear indication that the manager’s license has the Integration Console option enabled.

This document elaborately discusses how the Integration Console plugin can be used to:

 Add new performance/configuration tests to the eG Enterprise system;

Int roduct ion

3

 Modify performance/configuration tests so added;

 Create new layers and associate new/existing tests with those layers;

 Configure a new component type and build a new layer model for that component type using

new/existing layers;

Add ing /Mod if ying Tests us ing the Integrat ion Console

4

Adding/Modifying Tests Using the
Integration Console
Before attempting to add a new test using the Integration Console plugin, consider the following:

a) What is the purpose of the test? – should it monitor the performance of the target component or pull out

configuration information from it?

b) Does the test take any input arguments for execution? If so, what are they?

c) What are the key measurements/configuration information (as the case may be) that you want the test to

pull out from the target component?

d) How should the test collect measurements/configuration information from the target? By running a custom

Java-based program? by executing a script/batch file? by executing a SQL query? using Perfmon counters?

by polling the SNMP MIB? or by using JMX-based interfaces?

The answer to question d) above determines the type of test that you want to build. The eG Enterprise system

supports six types of tests, namely, Custom, Script/Batch File, SQL Query, Perfmon, Snmp, and Jmx.

1. Custom - Tests of this type offer complete flexibility to users in developing and

integrating new monitoring functionality into the eG Enterprise system. In order to

develop a Custom test, a user must use eG’s Java-based programming interface (which

will be described later in this document).

2. Script / Batch File – In some cases, it may be easier to build new monitoring capabilities

using simple shell scripts or batch files or VB scripts or powershell scripts. To support this

capability, the Integration Console supports a Script/Batch File test. When choosing this

type, the user provides the script/file to be used and the Integration Console takes care of

integrating the script into the eG framework.

3. SQL Query – Many a times critical statistics or an application are stored in a database. To

make it possible to extract such statistics from the database without having to write

elaborate programs, the Integration Console includes an SQL Query test type.

4. Perfmon – Perfmon tests can operate only on Windows environments. This option

provides a quick and easy way of building tests that interface with the Windows Perfmon

capability to collect various metrics of interest.

5. Snmp – Tests of this type are typically executed on network devices such as routers, hubs,

switches etc., so that performance statistics pertaining to the same can be obtained using

the SNMP protocol.

6. Jmx - Java Management eXtensions (JMX) offers a standard way by which

applications can expose custom metrics for monitoring tools. The eG Integration Console

can now be configured to collect and report on applications that offer JMX-based

Add ing /Mod if ying Tests us ing the Integrat ion Console

5

interfaces.

As the procedure for adding and configuring tests is different for each type of test, the sections to follow will discuss

each of these test types independently using separate examples.

2.1 Adding a Custom Test
As stated earlier, a Custom test type offers you the complete flexibility in introducing new monitoring functionality.

To implement a Custom test, a test class is generated using a Test Generator API to perform the specific functions

expected of the test. A detailed description of the Test Generator API is available in Section 2.4.4.

Using a Custom test type, you can build both performance and configuration tests. This section takes the help of

illustrated examples to explain the process of building a Custom performance test and a Custom configuration test.

2.1.1 Adding a Custom Performance Test

To illustrate the procedure for adding and configuring a Custom performance test, this section will be considering two

examples. The test that will be added in the first example is the MsFileTest. This test should report statistics

pertaining to the number of files locked on a server, and the unique count of users with open files on that server. In

the first example, this test will not be configured with the detailed diagnosis capability. In the second example, the

locked file count measure of the MsFileTest will be configured to report detailed diagnostics revealing the details of

the files that are locked.

2.1.1.1 Adding a Custom Performance Test Without Detailed Diagnosis

The first step towards building the MsFileTest in our example is to access the INTEGRATION CONSOLE – TEST page. For

this, first login to the eG admin interface as a user with Admin rights, invoke the Admin tile menu, and pick the Test

option from the Integration Console tile (see Figure 2.1).

Add ing /Mod if ying Tests us ing the Integrat ion Console

6

Figure 2.1: Selecting the Test option from the Integration Console tile

To add a new test, click on the Test option in Figure 2.1. A set of user-defined tesbs that have been previously added

to the eG Enterprise system (if any) will be displayed (see Figure 2.2). Click the Add New Test button in Figure 2.2 to

add a new test to the eG Enterprise system.

Figure 2.2: List of user-defined tests that pre-exist

Figure 2.4 shows the inputs that have to be specified to add a new test. First, specify the Test name as shown in

Figure 2.4.

Add ing /Mod if ying Tests us ing the Integrat ion Console

7

While adding a new test using the Integration Console, ensure that the Test name always

ends with _ex. If not, an error message (see Figure 2.3) will appear upon clicking the Add

button in Figure 2.2.

Figure 2.3: A message box stating that the test name should end with “_ex”

Click the OK button in the message box to close it, and proceed to provide the Test name in

the prescribed format.

Once the test name is specified, you wil have to indicate whether/not the test being added is a duplicate of an

existing test. eG Enterprise allows users to duplicate an existing IC-based test, so that the complete configuration of

the existing test (i.e., the test type, the test parameters, its measures, and all other test specifications except the test

name) is automatically copied to the new test. This duplication is particularly useful when you want to create

two/more tests with the same/similar functionality, and assign them to different layers or components.

Figure 2.4: Specifying the inputs corresponding to a new Custom test

If the test being added is a duplicate of an existing test, then set the Duplicate flag in Figure 2.4 to Yes. From the

Test to be duplicated list that then appears (see Figure 2.5), pick the existing test that is to be duplicated. Upon

selection of the test, the Test type of the chosen test will automatically apply to the new test. Now, click the Add

button to add the new test.

Figure 2.5: Duplicating a test

Add ing /Mod if ying Tests us ing the Integrat ion Console

8

On the other hand, if you set the Duplicate flag to No, then you would have to explicitly provide the new test’s

details. The MsFileTest_ex in our example is not a duplicate of any other test. Therefore, set the Duplicate flag to No

and proceed to specify the mode of Execution of the test (see Figure 2.4). The Execution field governs whether the

test is to be executed by an internal agent or by an external agent. As a rule of thumb, if the test relies on

application counters, log files, etc., it must be executed by an internal agent. On the other hand, if the test uses the

Simple Network Management Protocol (SNMP), HTTP, or emulates user requests it can be executed by an external

agent.

Using the Integration Console plugin, you can add an internal or an external test, but you

cannot add tests that need to be run by a remote agent – i.e., tests that need to be executed

in an agentless manner.

When adding a test, you also have to specify whether the test is Port based or not. In other words, you have to

indicate whether the test corresponds to a server that is listening on a specific TCP/UDP port or not.

Apart from the above, the Test type has to be selected. For the purpose of our example, select Custom as the Test

type. Then, click the Add button to add the new test to the eG Enterprise system.

When the test is successfully added, control will automatically switch to the Parameter tab page of the NEW TEST

DETAILS page (as shown by Figure 2.6). Parameters refer to the arguments that a test needs to be configured with in

order to run and collect performance statistics from a target.

Figure 2.6: The Parameter tab page

By default, any test you add using the Integration Console, will take TEST PERIOD and HOST as its parameters. While

the TEST PERIOD represents the frequency with which the test is to be run, the HOST indicates the host on which the

test should run. If the test is a port-based test, then, it will additionally take the PORT number as its parameter. You

will not be able to view any of these default parameters, and hence will not be able to modify or delete them.

Some tests however, may support more parameters than the default TEST PERIOD, HOST, and PORT. Such parameters

can be user privileges that a test may require for connecting to targets, filter conditions, pattern specifications etc.

You can create these additional parameters for a new test using the Parameter tab page. For this, you will have to

Add ing /Mod if ying Tests us ing the Integrat ion Console

9

click the Add New Parameter button in Figure 2.6. This will invoke Figure 2.7, where you can specify the Parameter

name and the Default value of the parameter.

Figure 2.7: Adding a new test parameter

Once a Default value is set here, then every time the test runs, it will automatically use this default value for all

servers on which it runs. Therefore, when setting a Default value, make sure that the value you provide does not

have to be changed at run-time according to the target server/environment.

If the value of the parameter may vary with the target server/environment, then its best to leave the Default value as

unconfigured. If this is done, then, once this test is mapped to a server and that server is managed in eG, the eG

Enterprise system will explicitly prompt you to configure this parameter with a valid value before attempting to

monitor that server. This way, you will be able to configure this parameter with the appropriate value at run-time and

ensure that the test executes smoothly.

Add ing /Mod if ying Tests us ing the Integrat ion Console

10

In addition to the default parameters bundled with every new test, eG Enterprise provides

three ready-to-use parameters that can be, if required, configured for any new test added

using the Integration Console. These parameters are, namely, executionTime, useMgrTime,

and executeAtFixedTime. Typically, the executionTime parameter can be set for tests that

need to execute at a specific time every day, or at the beginning of every hour. For instance,

say, you want to add a new test that should trigger a ‘database cleanup’ process at 11 PM

every day and alert administrators if the process fails to start at the set time. Such a test can

take executionTime as one of its parameters, so that you can specify the exact time of the

day at which the clean up process needs to begin. Similarly, if you want a test to execute at

the beginning of every hour and report metrics, once again, you might want to use the

executionTime parameter. While setting the TESTPERIOD as 1 hour can ensure that the test

runs once every hour, it cannot guarantee that the test will run at the beginning of every

hour. To add this parameter to a new test, specify executionTime in the Parameter text box

of Figure 2.7. You can leave the Default value as unconfigured, as this parameter would

typically expect user input.

If the executionTime parameter has been added to any new IC test, then, depending on

need, you may want to use the useMgrTime parameter along with it. By default, as soon as

the eG agent starts, it synchronizes time with the eG manager, and proceeds to report

measures at the manager’s time. In MSP environments particularly, a single, central manager

will be receiving performance data from managed customer environments across the globe -

i.e., from agents operating in different time zones. By default, all these agents will run tests

and report measurements at the manager’s time. This means, if an executionTime has been

specified for one/more tests executed by these agents, and key maintenance processes are

being triggered by these tests, such processes will run at the manager’s time and not the

agent’s, thereby causing confusion. Therefore, whenever there is a time difference between

the agent and manager zones, you will have to make sure that the test that supports the

executionTime parameter runs according to the agent’s time and not the manager’s. To

ensure this, you will have to additionally configure a useMgrTime parameter for the test. To

add this parameter to an IC-based test, specify useMgrTime in the Parameter text box, and

set the Default value to no. Also, note that the executionTime parameter can be added as a

stand-alone parameter to any new IC-based test, but the useMgrTime parameter can only be

used alongside the executionTime parameter.

The executeAtFixedTime parameter can be used if a test needs to run at a fixed interval (in

hours), starting from ‘midnight’ every day. For instance, you may have written a test to check

whether/not a virus scanner runs at 12 AM and every 3 hours thereafter, every day. To make

sure that the test runs at this exact frequency, first integrate the test into the eG Enterprise

system via IC, and when doing so, specify executeAtFixedTime as a Parameter of the test;

then, set Yes as its Default value. Later, when configuring this test for a component, make

sure that you set the TEST PERIOD as 3 hours. Typically, eG Enterprise computes a test’s

frequency based on when the eG agent executing that test was started. In the case of this

test however, since the executeAtFixedTime parameter is set to Yes, the eG agent uses 12

AM (midnight) as the base for computing the test frequency, regardless of when it (i.e., the

eG agent) was started. This ensures that the test runs every 3 hours from midnight – i.e., at

3 AM, 6 AM, 9 AM, 12 PM, 3 PM, 6 PM, 9 PM, 12 AM, and so on! Moreover, in this case, even

if the eG agent is restarted in-between – say, at 2.30 PM – it will run the test at 3 PM as

originally scheduled, and not at 5.30 PM (which is 3 hours from the time the eG agent was

started). When using the executeAtFixedTime parameter however, make sure that the TEST

PERIOD is only set in hours and is set to a number that is a factor of 24 – i.e., it can only be

1, 2, 3, 4, 6, 8, 12, or 24 hours. This is because, this parameter computes the test frequency

using the ’24-hour’ time format.

Add ing /Mod if ying Tests us ing the Integrat ion Console

11

In our example, the MsFileTest_ex does not require any parameters to obtain the statistics of interest. Therefore,

proceed to configure the measures to be reported by the test, by clicking on the Measure tab page in Figure 2.6.

Since measures are yet to be configured for the MsFileTest_ex, you will find a message to that effect in Figure 2.8

that appears.

Figure 2.8: The Measure tab page indicating that measures are yet to be configured for the MsFileTest_ex

Click the Add New Measure button in Figure 2.8 to add a new measure. Figure 2.9 will then pop-up, using which you

can create a new measure.

Figure 2.9: Adding a new measure

The Measure name field indicates the name of the measurement (this will be displayed in eG’s monitor interface),

while the Unit (whether %, seconds, requests/sec, etc.) specifies the unit in which the measurement’s value is

reported. The Database column size field indicates the size of each database record corresponding to a measurement

value. For example, Number(7,4) indicates that the output of the measurement will be a number in the range 0 to

Add ing /Mod if ying Tests us ing the Integrat ion Console

12

100, with the fractional value being limited to four decimal places. The Measure index determines the order in which

the measures are to be displayed in the monitor console. For example, if 1 is the Measure index, then the

corresponding measure will appear first in the list of measures displayed in the monitor console. This index is

automatically generated by the eG Enterprise system, and cannot be edited by the user. In our example, the

Measure index of the measure File_locks_count is 1.

Sometimes, administrators may want to convert the unit of measurement of a performance metric before displaying

the same in the eG monitoring console. For instance, a duration value originally available in ‘milliseconds’ may have

to be changed to ‘Secs’ before it is displayed in the console. If you want the unit of the measure being added to be

so converted at test run time, then select a Conversion Factor from the list. For example, if a value in ‘milliseconds’

needs to be converted to ‘seconds’, then select /1000 as the conversion factor. By default, 1 is chosen as the

Conversion Factor; this implies that, by default, unit conversion does not take place for a new measure at test run

time.

The Conversion Factor list comes with a default set of conversion factors. You can however,

override this list by adding more conversion factors. For instance, the default Conversion

Factor list does not provide the option to convert Bytes to MB at run time. To include this

option in the list, follow the steps below:

a. Edit the eg_ui.ini file in the <EG_INSTALL_DIR>\manager\config directory.

b. To include a new conversion factor, you will have to append an entry of the

following format to the [CONVERSION_FACTORS] section of the file:

c. DisplayName=Value

d. For instance, to support ‘Bytes to MB’ conversion, append the following entry to the

[CONVERSION_FACTORS} section:

/1048576 (Bytes to MB)=0.00000095367431640625

e. In this case, the DisplayName, /1048576 (Bytes to MB), will be displayed as an

option in the Conversion Factor drop-down list. If this option is chosen, then, at test

run time, the conversion value of 0.00000095367431640625 will be multiplied with

the actual measure value that is reported in Bytes to convert it into MB. Care should

be taken while specifying the conversion value, as incorrect values will result in

wrong measures being reported by the test.

f. Once the new entry is appended to the [CONVERSION_FACTORS] section, save the

file.

g. Finally, restart the manager.

Once this is done, you will find the string /1048576 (Bytes to MB) appear as an option in the

Conversion Factor list.

When configuring a measurement for a custom test, also specify the text string that must be displayed in the eG

alarm window when the corresponding measurement violates its threshold. This is only an optional field. For our

example, however, let us specify an appropriate Alarm display string (see Figure 2.9)

By clicking on the Add button in Figure 2.9, the first measurement of the MsFileTest_ex can be added. To add more

measures, click the Yes button in the message box (see Figure 2.10) that appears subsequently.

Add ing /Mod if ying Tests us ing the Integrat ion Console

13

Figure 2.10: A message box requesting you to confirm whether/not you want to add more measures for the
MsFileTest_ex

This will once again open the NEW MEASURE DETAILS pop-up, using which you can configure the second measure –

i.e., the Unique_users_count measure - of the MsFileTest_ex (see Figure 2.11)

Figure 2.11: Adding the second measure of the MsFileTest_ex

If you click on the Add button in Figure 2.11, the message box of Figure 2.10 will re-appear. Siince no more

measures need be added for the MsFileTest_ex, this time, click the No button in the message box to end measure

configuration.

Doing so will instantly lead you to the Generate tab page, where you will have to specify the implementation of the

test. All Custom tests that are newly added to eG have to be implemented in Java. The later sections of this chapter

will describe how the eG test generator API can be used to implement new tests.

Add ing /Mod if ying Tests us ing the Integrat ion Console

14

Figure 2.12: Specifying a test’s implementation

Figure 2.12 shows how a new test can be added to the eG Enterprise system after it has been configured. After all

the measurements of the test have been specified, the directory in which the test’s implementation exists should be

specified in the input box corresponding to the Class file specification. The test implementation must exist in a Java

class file with the same name as the test name – e.g., the implementation of MsFileTest_ex must exist in a class file

named MsFileTest_ex.class.

If the class file is present in a remote location, then you can upload it to the eG manager, by clicking on the Choose

button adjacent to the Class file text box. This will invoke a pop-up window using which you can Browse for the class

file and specify its location (see Figure 2.13).

Figure 2.13: Uploading the class file to the eG manager

Finally, click on the Upload button in the pop-up window (see Figure 2.13), to upload the class file in the remote

location to the eG manager. If the class file has already available on the eG manager system, just specify the location

of the file against the Class file text box. Some class files may require certain library files (eg., “.jar” or “.so” (shared

object files) files) for their execution. The name of the file along with the directory in which these files exist has to be

specified in the Library file specification. Please note that the size of these files should not exceed 0.5 MB in order to

prevent excessive load while uploading. If the library file is present in a remote location, then you can upload it to

the eG manager, by clicking on the Choose button adjacent to the Library file text box. Note that the Load class file

checkbox should be selected if the class file has to be loaded every time the test is implemented. The Load library file

checkbox should be selected if the library file has to be loaded every time the test is implemented.

Since in this example, the MsFileTest_ex need not be configured with any detailed diagnosis capability, leave the

Click here to enable detailed diagnosis for this test check box in Figure 2.12 unchecked. Once the class and library

files are specified, click the Generate button to generate the test.

Add ing /Mod if ying Tests us ing the Integrat ion Console

15

Clicking on Generate invokes Figure 2.14, where you can view the measures that have been configured for the

MsFileTest_ex. You can set default thresholds for a measure by clicking on that measure in Figure 2.14.

Figure 2.14: Viewing the measures of the MsFileTest_ex

Figure 2.15 will then appear, which will help you configure the thresholds for the chosen measure.

Figure 2.15: Configuring the thresholds for a measure of the MsFileTest_ex

2.1.1.2 Configuring Detailed Diagnosis for a Custom Performance Test

To make diagnosis more efficient and accurate, eG Enterprise embeds an optional detailed diagnostic capability. With

this capability, the eG agents can be configured to run detailed, more elaborate tests as and when specific problems

are detected. Alternatively, these tests can also be run periodically for proactive monitoring purposes.

If required, you can also configure a custom test to report detailed diagnostics. To lend this capability to the

Add ing /Mod if ying Tests us ing the Integrat ion Console

16

MsFileTest_ex in our example, you will have to select the Click here to enable detailed diagnosis for this test check

box in the Generate tab page, when configuring the test’s implementation (see Figure 2.16).

Figure 2.16: Configuring detailed diagnosis for the MsFileTest_ex

The option to enable the detailed diagnosis capability for an IC test will be available only if

the following conditions are fulfilled:

 The eG license should enable the detailed diagnosis capability

 Both the normal and abnormal detailed diagnosis frequencies should not be 0.

For more information on configuring these frequencies, refer to the eG User

Manual.

Finally, click the Generate button in Figure 2.16. This will introduce a new Detailed Diagnosis tab page in the NEW

TEST DETAILS page (see Figure 2.17).

Figure 2.17: The Detailed Diagnosis tab page

The Detailed Diagnosis tab page provides two sub-tabs, namely, Measure and Generate. Since the detailed diagnosis

capability has not yet been configured for any measure of the MsFileTest_ex, the Measure tab page will only display

a message to that effect. To indicate for which measure of the MsFileTest_ex detailed diagnostics should be reported

Add ing /Mod if ying Tests us ing the Integrat ion Console

17

and what type of information should be collected as part of the detailed diagnostics, click the Add New Measure

button in Figure 2.17.

When Figure 2.18 appears, select the measure for which detailed diagnostics are required from the Measures for this

test drop-down list. For our example, let us configure the File_locks_count measure of the MsFileTest_ex to provide a

detailed diagnosis that will reveal the list of open files in the network. Therefore, select File_locks_count from the

list. Next, provide a comma-separated list of Column headings under which the detailed diagnosis information will be

displayed in the eG monitor interface (see Figure 2.18). Then, provide an appropriate Description of the detailed

diagnosis that will be displayed in the DETAILED DIAGNOSIS page of the eG monitor interface. Finally, click on the Add

button in Figure 2.18 to apply the selection.

Figure 2.18: Configuring detailed diagnosis for the File_locks_count measure of the MsFileTest_ex

A summary of the specification will then be displayed (see Figure 2.19). You can either Modify the specification or

Delete it using the buttons provided therein.

Figure 2.19: A summary of the detailed diagnosis specification of the MsFileTest_ex

If you want to proceed with the displayed specifications, simply click the Generate sub-tab in Figure 2.19 to specify

the implementation of the detailed diagnosis.

Add ing /Mod if ying Tests us ing the Integrat ion Console

18

Figure 2.20: Specifying the detailed diagnosis implementation

The detailed diagnosis implementation must exist in a Java class file whose name is the test name suffixed with

“_DD” - e.g., the implementation of detailed diagnosis for the MsFileTest_ex must exist in a class file named

MsFileTest_ex_DD.class. The path to this class file has to be mentioned in the Class file for detailed diagnosis text

box in Figure 2.20. If the file exists in a remote location, then click on the Choose button adjacent to the text box to

upload the file to the eG manager.

As before, specify any library files using the Library file specification (see Figure 2.20).

Finally, click the Generate button in Figure 2.20 to generate the test.

2.1.2 Adding a Custom Configuration Test

To take you step-by-step through the procedure for building a new configuration test, this section takes the help of

two examples. In the first example, a descriptor-based test named NetShare will be added, which will report the

names of shared folders on a target system, the full path to each of the shared folders, and the user-defined remarks

associated with each shared folder. In the second example, a non-descriptor-based test named NetShareCount will

be added, which will report the number of shared folders on a target system. This test too will later be associated

with the NetShare component-type.

2.1.2.1 Adding a Descriptor-based Configuration Test

To add a descriptor-based configuration test, first, click the Add New Test button in the INTEGRATION CONSOLE - TEST

page (see Figure 2.2). In the NEW TEST DETAILS page (see) that appears next, specify the Test name (see Figure

2.21). For the purpose of our example, set Duplicate flag to No (as the test being added is not a duplicate of any

existing IC-based test), set Execution mode to Internal, Port based to Yes, and Test type to Custom.

Figure 2.21: Adding a descriptor-based configuration test

Then, click the Add button in Figure 2.21 to add the new test. Figure 2.22 will then appear.

Add ing /Mod if ying Tests us ing the Integrat ion Console

19

Figure 2.22: Specifying the parameters of the new test

Since the NetShare_cf_ex test does not take any input parameters, proceed to configure the measures for the test by

clicking the Measure tab page in Figure 2.22.

Figure 2.23 will then appear. Click the Add New Measure button in the Measure tab page of Figure 2.23. In the NEW

MEASURE DETAILS window that pops up, specify Resource as the name of the first measure in the Measure name text

box. This measure will report the full path to the shared folders on a target.

Figure 2.23: Configuring the first measure for the configuration test

Then, click the Add button in Figure 2.23. When you are prompted to add more measures for the test (see Figure

2.24), click Yes to continue adding measures.

 While adding a configuration test, make sure the Test name ends with _cf_ex.

Therefore, the name of the test in our example will be NetShare_cf_ex.

 Using the Integration Console plugin, you can add an internal or an external test,

but you cannot add tests that need to be run by a remote agent – i.e., tests that

need to be executed in an agentless manner.

Add ing /Mod if ying Tests us ing the Integrat ion Console

20

Figure 2.24: A message box requesting your confirmation to continue adding measures for the NetShare_cf_ex test

This will invoke Figure 2.25, wherein you can add the second measure – Remark.

Figure 2.25: Adding the second measure of the NetShare_cf_ex test

Click the Add button in Figure 2.25 to add the second measure. Now, proceed to generate the test. For this, once the

Generate tab page appears, specify the directory in which the test’s implementation exists in the input box

corresponding to the Class file specification. The test implementation must exist in a Java class file with the same

name as the test name – e.g., the implementation of NetShare_cf_ex test in our example must exist in a class file

named NetShare_cf_ex.class (see Figure 2.26).

Figure 2.26: Generating a test

If the class file is present in a remote location, then you can upload it to the eG manager, by clicking on the Choose

button adjacent to the Class file text box. This will invoke a pop-up window using which you can Browse for the class

file and specify its location, and click on the Upload button to upload the class file to the eG manager. If the class file

has already available on the eG manager system, just specify the location of the file against the Class file text box.

Some class files may require certain library files (eg., “.jar” or “.so” (shared object files) files) for their execution. The

name of the file along with the directory in which these files exist has to be specified in the Library file specification.

Please note that the size of these files should not exceed 0.5 MB in order to prevent excessive load while uploading.

If the library file is present in a remote location, then you can upload it to the eG manager, by clicking on the Choose

button adjacent to the Library file text box. Note that the Load class file checkbox should be selected if the class file

has to be loaded every time the test is implemented. The Load library file checkbox should be selected if the library

Add ing /Mod if ying Tests us ing the Integrat ion Console

21

file has to be loaded every time the test is implemented.

Next, indicate the Database column size of both the configured measures by picking an option from the drop-down

list with the same name.

Since the NetShare_cf_ex test in our example is a descriptor-based test, select the Descriptor based test check box in

Figure 2.26. Finally, click the Generate button. In the case of descriptor-based configuration tests, the eG Enterprise

system will automatically append a measure named Installed to the list of measures that pre-exist for the test. This is

done to enable the test to keep track of the installed status of the descriptors - this way, if a descriptor is removed,

then the configuration monitoring module will be able to automatically capture this change and update the change

tracker with it.

With that, the new descriptor-based configuration test is added.

2.1.2.2 Adding a Non-Descriptor-based Configuration Test

To add a non-descriptor-based test, first click on the Add New Test button in INTEGRATION CONSOLE – TEST page (see

Figure 2.2). When the NEW TEST DETAILS page appears (see Figure 2.27), type NetShareCount_cf_ex against Test

name, for the purpose of our example. Then, set Duplicate flag to No as the test being added is not a duplicate of

any existing IC-based test. Next, set Internal as the Execution mode, set the Port based flag to Yes, and Test type to

Custom. Finally, click on the Add button to add the new test.

Figure 2.27: Adding a new non-descriptor-based test

Figure 2.28 will then appear. To configure measures for the NetShareCount_cf_ex test, click the Measure tab page in

Figure 2.28.

Figure 2.28: Viewing the details of the non-descriptor-based test

When Figure 2.29 appears, click the Add New Measure button therein to add a measure for the NetShareCount_cf_ex

test.

Add ing /Mod if ying Tests us ing the Integrat ion Console

22

Figure 2.29: Clicking the Add New Measure button to add a new measure for the NetShareCount_cf_ex test

Figure 2.30 then appears. The NetShareCount_cf_ex test reports the count of shared folders on the target system.

Therefore, type No_of_share_folders as the Measure name in Figure 2.30 and click the Add button.

Figure 2.30: Configuring the No_of_share_folders measure of the NetShareCount_cf_ex test

When you are prompted to add more measures for the test (see Figure 2.31), click No to indicate that you have

finished adding measures for the test.

Figure 2.31: A message box requesting your confirmation to continue adding measures for the NetShareCount_cf_ex
test

This will automatically take you to the Generate tab page. To generate the test, by specifying the full path to the

Class file that holds the test’s implementation logic.

Add ing /Mod if ying Tests us ing the Integrat ion Console

23

Figure 2.32: Generating the non-descriptor-based test

The test implementation must exist in a Java class file with the same name as the test name – e.g., the

implementation of NetShareCount_cf_ex test in our example must exist in a class file named

NetShareCount_cf_ex.class (see Figure 2.32).

If the class file is in a remote location, then you can upload it to the eG manager, by clicking on the Choose button

adjacent to the Class file text box. This will invoke a pop-up window using which you can Browse for the class file

and specify its location, and click on the Upload button to upload the class file to the eG manager. If the class file has

already available on the eG manager system, just specify the location of the file against the Class file text box. Some

class files may require certain library files (eg., “.jar” or “.so” (shared object files) files) for their execution. The name

of the file along with the directory in which these files exist has to be specified in the Library file specification. Please

note that the size of these files should not exceed 0.5 MB in order to prevent excessive load while uploading. If the

library file is present in a remote location, then you can upload it to the eG manager, by clicking on the Choose

button adjacent to the Library file text box. Note that the Load class file checkbox should be selected if the class file

has to be loaded every time the test is implemented. The Load library file checkbox should be selected if the library

file has to be loaded every time the test is implemented.

Next, indicate the Database column size of the configured measure.

Since the NetShareCount_cf_ex test in our example is a non-descriptor-based test, just click the Generate button to

generate the test.

2.1.3 Test Generator API

So far, we have reviewed how a new Custom test can be integrated into the eG Enterprise system. The one aspect

that was not covered in the previous sections is how a test class can be generated to perform the specific functions

expected of the Custom test. This section explains the test generator API that is provided with the eG Enterprise

system to enable users to design and implement new testing capability.

The test generator API consists of a GenericTest abstract class. In order to extend eG’s monitoring functionality, a

user has to develop new tests that extend the GenericTest and implement new monitoring capabilities.

Figure 2.33 shows the architecture of the eG test generator API. The API is the module that links user-defined tests

to other eG agent components.

Add ing /Mod if ying Tests us ing the Integrat ion Console

24

Figure 2.33: Architecture of eG’s test generator API

2.1.3.1 System Requirements

The test generator API is included as part of the eG agent package. In order to use the API, the CLASSPATH

environment setting for the user who is crafting new tests must be set so as to include the Java archive file

<EG_HOME_DIR>\lib\eg_agent.jar and <EG_HOME_DIR>\lib\eg_plus.jar, where EG_HOME_DIR is the

installation directory of the eG manager and agents (eg. /opt/egurkha on Unix, C:\Program Files\eGurkha

on Windows). Consequently, all new test developments must be performed on a system on which the eG agent has

been installed. Once the test is developed and compiled to produce the class file, this file must be made available on

the eG manager system, so that the test can be integrated into the eG Enterprise system using the Integration

Console.

2.1.3.2 Component Classes

The Test generator API consists of a single abstract class called GenericTest whose functionality has to be

implemented in order to develop a test that would monitor a component type of user’s choice.

2.1.3.3 Summary of Methods

The following methods of the Test generator API must be used for developing new tests.

Method Signature Description

public void

computeMeasures(Hashtable

paramList)

This method must be overridden to implement specific test execution

functionality. This method should also make necessary calls to other

methods in the API as explained above. Apart from that the method may

call other user-specific methods or include within itself the functionality

for executing the test and assigning values to measures. The result of

the execution decides the further calls in the method.

Note: It is mandatory to override this method.

final void setMeasureCount(int

measureCount)

This method must be called in the constructor to enable the eG Agent

component to register the number of measures this test would report.

Note: It is mandatory to call this method from the constructor. The

count of measures should be the same as the number of measurements

User-defined tests

Test generator API

eG Agent components

Add ing /Mod if ying Tests us ing the Integrat ion Console

25

configured via the eG Integration Console interface.

Description of arguments:

measureCount: This argument indicates the number of measures the

test would report.

final void addNewMeasure(ArrayList

measureList)

This method is called whenever a set of measures are to be reported.

This is to be used only by a non-descriptor based Test.

Note: The ArrayList passed should always contain a group of Double

objects and the list should always follow a same order.

Description of arguments:

measureList: This argument represents an ArrayList collection of all

double values encapsulated into Double objects.

final void addNewMeasure(String

descriptor, ArrayList measureList)

This method is called whenever a set of measures are to be reported.

This is to be used only by a descriptor based Test.

Note: The ArrayList passed should always contain a group of Double

objects and the list should always follow a same order.

Description of arguments:

descriptor: This argument represents a String that describes the

name with which the corresponding set of measures are associated.

measureList: This argument represents an ArrayList collection of all

double values encapsulated into Double objects.

final void setErrorMessage (String

errorMsg)

This method can be called whenever the developer wants to log an error

or unexpected output for a test.

Note: The error can be read from the agent/logs/error_log file

that is available in the agent install directory.

Description of arguments:

errorMsg: This argument represents a string which describes the error

that has occurred.

Tests that are to be run by an external agent can determine the target server and port

number that they are monitoring using the variables - targetHost (italics) and portNo (italics)

that are defined in the base class - i.e., the GenericTest class.

2.1.3.4 Writing Tests using the Test Generator API

This section outlines how user-defined tests that extend eG’s functionality can be written using the test generator

API. A user defined test class must extend the GenericTest abstract class and override the only abstract method to

report measures to the eG agent system.

Given below is a sample test that reports the availability of a server.

import java.util.*;

Add ing /Mod if ying Tests us ing the Integrat ion Console

26

public class AvailabilityTest extends GenericTest

{

// declare necessary variables

double availability = 0; // default value of server availability

public AvailabilityTest (String [] args)

 {

/*** Calling super initializes several parameters for the test

namely

• targetHost - Target Host for the test

• portNo - Target Port for the test value is “NULL” if its not a

port-based server

• other parameters configured using the Integration Console

interface

 ***/

super(args);

 /*** Call setMeasureCount to initialize the number of

 measures for the test

 ***/

setMeasureCount(1); // One measure namely - availability

 }

/*** Call computeMeasures to report measures ***/

public void computeMeasures (Hashtable paramList)

 {

 /*** We may call new methods to perform different tasks

 Assume we use a method called getAvailability which

 Performs the availability check and returns the value.

 ***/

availability = getAvailability();

ArrayList al = new ArrayList();

al.add(new Double(availability));

Add ing /Mod if ying Tests us ing the Integrat ion Console

27

 /*** Measures have to be reported by populating an arraylist

 and passing it as argument to the addNewMeasure() method

 ***/

addNewMeasure(al);

 }

// User defined methods

private double getAvailability()

 {

 /*** This is a user-defined implementation. The user can choose one of several

approaches to determine a server’s availability:

 Eg. 1 Can Establish socket connection to the targetHost and

 portNo and find out the availability

 Eg. 2 Can ping the targetHost and find out the availability

 Eg. 3 Can establish a HTTP connection to the targetHost and

 portNo and find out the availability

 Note : The values of target host and port can be accessed by

 using the public variables namely “targetHost” and

 “portNo” respectively. These variables are defined

 in the GenericTest class itself.

 ***/

boolean status = connectToServer (); // user defined

if (status) // connection succeeded

return (100);

else

return (0);

 }

}

The above test is an example of a non-descriptor test in the sense that the results of the tests are not specific to a

descriptor.

Add ing /Mod if ying Tests us ing the Integrat ion Console

28

To illustrate how a descriptor based test works, suppose we are monitoring an application that has several instances

of servers executing. In this case, it is essential for us to measure and report the availability of each of the server

instances. In this case, the test is required to discover the server instances first and then check the availability of

each of these instances. For each server instance, the test reports the availability of the instance.

public class AvailabilityTest extends GenericTest

{

// declare necessary variables

double availability = 0;

boolean serverInstancesDiscovered = false;

// internal variable that is used to indicate if we

// have already discovered the server instances

String[] servers = null; // used to maintain a list of

// serverInstances

public AvailabilityTest (String [] args)

 {

/*** Calling super initializes several parameters for the test

namely

• targetHost - Target Host for the test

• portNo - Target Port for the test value is “NULL” if its not a

port-based server

• other parameters configured using the Integration

 * Console interface

 ***/

super(args);

 /*** Call setMeasureCount to initialize the number of

 measures for the test

 ***/

setMeasureCount(1); // One measure namely – availability

 }

/*** Call computeMeasures to report measures ***/

public void computeMeasures (Hashtable paramList)

 {

if (serverInstancesDiscovered == false)

Add ing /Mod if ying Tests us ing the Integrat ion Console

29

discoverServerInstances(paramList); //user defined function

if (servers == null || servers.length == 0)

return; // unable to discover any servers

for(int i=0; i<servers.length; i++)

 {

 /*** We may call new methods to perform different

 tasks. Assume we use a method called

 getAvailability which performs the availability

 check and returns the value.

 ***/

availability = getAvailability(servers[i]);

ArrayList al = new ArrayList();

al.add(new Double(availability));

 /*** Measures have to be reported by populating an

 arraylist and passing it as an argument to the

 addNewMeasure() method. In descriptor based

 tests and additional parameter defining the

 descriptor has to be passed to the method to

 enable the agent report appropriate availability

 values for different server instances of the

 application.

 ***/

addNewMeasure(servers[i], al);

// indicate that this is the measure for servers[i]

 }

 }

// User defined methods

private double getAvailability (String serverId)

{

 /*** This is a user-defined implementation. The user can choose one of several

approaches to determine a server’s availability:

 Eg. 1 Can Establish socket connection to the targetHost and

 portNo and find out the availability

Add ing /Mod if ying Tests us ing the Integrat ion Console

30

 Eg. 2 Can ping the targetHost and find out the availability

 Eg. 3 Can establish a HTTP connection to the targetHost and

 portNo and find out the availability

 Note : The values of target host and port can be accessed by

 using the public variables namely “targetHost” and

 “portNo” respectively. These variables are defined

 in the GenericTest class itself.

 ***/

boolean status = connectToServer (serverId); // user defined

if (status) // connection succeeded

return (100);

else

return (0);

 }

private void discoverServerInstances (Hashtable paramList)

 {

 /*** Lets assume the discovery is performed by accessing a URL,

which in turn returns the details of the existing

 server instances. In such a case the test would require a

parameter (“URL” in this case). Such parameters can be

configured using the Integration Console interface. These

parameters are accessible from the test at runtime. The

“paramList” variable which is a java.util.Hashtable object

provides access to all such variables configured by the

user.

***/

String param1 = paramList.get(“URL”);

/*** We may call new methods to perform different tasks. Assume

we use a method called discoverServers which downloads the

file available at “URL” and parses the response to find

out the list of currently running server instances.

Add ing /Mod if ying Tests us ing the Integrat ion Console

31

 ***/

servers = discoverServers(param1);

// set the global variable to indicate the list of

// server instances

serverInstancesDiscovered = true;

// indicate that we have discovered the instances

return;

}

public String [] discoverServers(String url)

{

 /*** User defined Implementation

 In this example we assume that we discover the server

 instances by making a url connection to the url

 configured for this purpose. connection to the

 targetHost and portNo and find out the availability

 ***/

}

}

A custom test can use various mechanisms to obtain measurements, eg., Processing log files, using sockets, SNMP

etc. The following example depicts a test that uses SNMP to monitor a target. Any test that uses SNMP must extend

the EgSnmpGenericTest class.

import java.util.*;

/* Extend EgSnmpGenericTest instead of GenericTest to

 implement common functionality of Snmp based tests

*/

public class SnmpAvailabilityTest extends EgSnmpGenericTest

{

 private String OID = “.1.3.6.1.2.1.4.8.1.1.2”;

private double availability = 0.0;

public SnmpAvailabilityTest (String [] args)

 {

Add ing /Mod if ying Tests us ing the Integrat ion Console

32

super(args);

setMeasureCount(1);

/* Arguments – snmpPort and snmpCommunity, are required for the test and are

processed in the super class */

 }

public void computeMeasures (Hashtable params)

 {

 /* Call the following method to walk

the specified MIB OIDs. The output of

the snmpwalk command is assigned to the

String arrays lhs and rhs

lhs -> stores left hand side of the output

rhs -> stores right hand side of the output

 */

 runSnmpCmdForOid(OID);

 if(lhs != null && lhs.length > 0)

 /* some output is stored ..

the device is available

*/

availability = 100.0;

else

{

/* No output stored ..

the device is not available

*/

availability = 0.0;

ArrayList al = new ArrayList(); al.add(new Double(availability));

addNewMeasure(al);

 }

 }

}

Add ing /Mod if ying Tests us ing the Integrat ion Console

33

A custom test can also be developed to collect configuration metrics from target components. Given below is a

sample custom test script that reports the names of shared folders on a target, the full path to the folders, and the

user-defined remarks for each folder.

import java.util.ArrayList;

import java.util.Hashtable;

import java.util.StringTokenizer;

import com.egurkha.util.EgUtilities;

/**

• Measures:

• 1. Resource

• 2. Remark

 */

public class NetShare_cf_ex extends GenericTest

{

public NetShare_cf_ex(String[] args)

 {

super(args);

setMeasureCount(3);

setConfigInfoTestFlag(true); // true for info based

 }

public void computeMeasures(Hashtable ht)

 {

try

 {

EgUtilities egUtil = EgUtilities.createInstance();

String netShareCmd = “net share”;

ArrayList data = (ArrayList) egUtil.getExecOutputLines(netShareCmd);

if (data == null || data.size() < 2)

 {

configError = true; // info based only

return;

 }

data = (ArrayList) data.get(0);

if (data == null || data.size() == 0)

 {

return;

 }

StringTokenizer st = null;

Add ing /Mod if ying Tests us ing the Integrat ion Console

34

ArrayList measureList = null;

int size = data.size();

for (int g = 0; g < size; g++)

 {

String line = (String) data.get(g);

//System.out.println(line);

if (line == null)

 {

continue;

 }

line = line.trim();

if (line.length() == 0 || line.startsWith(“Share”) || line.startsWith(“------“) ||

line.startsWith(“The command comp”))

 {

continue;

 }

st = new StringTokenizer(line);

int count = st.countTokens();

String shareName = “”;

String resource = “-“;

String remark = “-“;

if (count >= 2)

 {

shareName = st.nextToken().trim();

if (shareName.equalsIgnoreCase(“IPC$”)) // Remote IPC

 {

remark = st.nextToken().trim() + “ “ + st.nextToken().trim();

 }

else

 {

resource = st.nextToken().trim();

if (count >= 3)

 {

remark = st.nextToken().trim() + “ “ + st.nextToken().trim();

 }

 }

 }

measureList = new ArrayList();

measureList.add(resource);

measureList.add(remark);

addNewMeasure(shareName,measureList);

 }

Add ing /Mod if ying Tests us ing the Integrat ion Console

35

 }

catch (Exception e)

 {

e.printStackTrace();

 }

 }

public static void main(String[] args)

 {

NetShare_cf_ex net = new NetShare_cf_ex(args);

net.computeMeasures(new Hashtable());

 }

}

The sample script above is for a descriptor-based configuration test. Non-descriptor-based configuration tests can

also be developed. Given below is a sample script for the same. This script simply reports the number of shared

folders on a target.

import java.util.ArrayList;

import java.util.Hashtable;

import java.util.StringTokenizer;

import com.egurkha.util.EgUtilities;

/**

• Measure:

• 1. No of share folders

 */

public class NetShareCount_cf_ex extends GenericTest

{

public NetShareCount_cf_ex(String[] args)

 {

super(args);

setMeasureCount(1);

 }

public void computeMeasures(Hashtable ht)

 {

try

 {

EgUtilities egUtil = EgUtilities.createInstance();

String netShareCmd = “net share”;

ArrayList data = (ArrayList) egUtil.getExecOutputLines(netShareCmd);

if (data == null || data.size() < 2)

Add ing /Mod if ying Tests us ing the Integrat ion Console

36

 {

return;

 }

data = (ArrayList) data.get(0);

if (data == null || data.size() == 0)

 {

return;

 }

StringTokenizer st = null;

ArrayList measureList = new ArrayList();

int k = 0;

int size = data.size();

for (int g = 0; g < size; g++)

 {

String line = (String) data.get(g);

if (line == null)

 {

continue;

 }

line = line.trim();

if (line.length() == 0 || line.startsWith(“Share”) || line.startsWith(“------“) ||

line.startsWith(“The command comp”))

 {

continue;

 }

++k;

 }

measureList.add(k+””);

addNewMeasure(measureList);

 }

catch (Exception e)

 {

e.printStackTrace();

 }

 }

public static void main(String[] args)

 {

NetShareCount_cf_ex net = new NetShareCount_cf_ex(args);

net.computeMeasures(new Hashtable());

 }

}

Add ing /Mod if ying Tests us ing the Integrat ion Console

37

2.1.3.5 Writing Detailed Diagnosis Tests

This section outlines how to write detailed diagnosis tests for the user-defined classes that extend eG’s functionality.

The Java class that implements detailed diagnosis for a test must be named after the test and be suffixed by an

_ex_DD. Such tests extend EgTest_DD and must include a method for every measure for which detailed diagnosis is

desired. The name of the class is case-sensitive.

For the MsFileTest_ex in our example, the Java class that implements detailed diagnosis should be called

MsFileTest_ex_DD. Since detailed diagnosis has been configured for the measure File_locks_count, a method with

the name File_locks_count_dd has to be implemented. Like the class name, the method name is also case-sensitive.

Given below is a sample test that gives a detailed diagnosis on the files opened for MsFileTest_ex:

/*

Detailed diagnosis for MS_FILE_SERVER_ex component type is enabled for the measure

File_locks_count

 */

import java.util.*;

/*

Tests for Detailed Diagnosis must by suffixed by _ex_DD.

 */

public class MsFileTest_ex_DD extends EgTest_DD

{

 /*

Declare the necessary variables

 */

private boolean uploadStatus = false;

public MsFileTest_ex_DD(String entity)

 {

super(entity);

 }

 /*

For every measure that requires detailed diagnosis,

add a method, the name of which is of the type <measureName>_dd

 */

public void File_locks_count_dd(

String methodName,

String measureName,

String targetHost,

String reportingName,

Add ing /Mod if ying Tests us ing the Integrat ion Console

38

String portNo,

String siteName,

String info,

String msmtHost,

String msmtTime,

String state,

EgTest test)

 {

String ddData;

 /*

The data that is to be displayed as part of detailed diagnosis is collected using the

 * addLine() method.

 */

this.addLine(ddData);

 /*

Once all the data for detailed diagnosis has been added,

send the results to the manager using the uploadResults() method

 */

uploadStatus = this.uploadResults(

methodName,

measureName,

reportingName,

portNo,

siteName,

info,

msmtHost,

msmtTime,

state);

 }

 }

}

Add ing /Mod if ying Tests us ing the Integrat ion Console

39

Though any number of lines of data can be added using the addLine() method, it is

recommended that the implementation of the detailed diagnosis does not send large

amounts of data to the manager everytime.

2.1.3.6 Troubleshooting

To troubleshoot problems when a user-defined test is integrated into the eG Enterprise system, check the entries in

the agent error log, which is available in the file <EG_HOME_DIR >\agent\logs\error_log. For entries specific

to a user-defined test to be available in the error log, it is necessary for the test to log errors explicitly.

2.2 Adding a Script/Batch File-based Test
Many system administrators would not prefer to write Custom tests, by programming in Java. To allow administrators

to easily extend eG’s capabilities, the Integration Console includes a Script/Batch File test. This test allows an

administrator to simply write a shell script / batch file / VB script / powershell script, which they can incorporate into

the Integration Console to provide custom monitoring capability. This section will help you gain a lucid understanding

of how to add and configure a new test of the Script/Batch File type.

To illustrate how to add a Script/Batch File test, let us take an example of a DiskSpaceTest, which tracks the disk

utilization of a server. In order to create the test, first, click the Add New Test button in the INTEGRATION CONSOLE -

TEST page (see Figure 2.2). In the NEW TEST DETAILS page (see Figure 2.34) that appears next, specify the Test

name.

While adding a new test using the Integration Console, ensure that the Test name always

ends with _ex. If not, an error message (see Figure 2.3) will appear upon clicking the Add

button in Figure 2.34.

Since the new test is not a duplicate of any existing test, set the Duplicate flag to No. Then, select Script/Batch File

as the Test type. Next, mention the Execution mode. The choice of an Execution mode depends upon whether the

test is to be executed by an internal agent or an external agent. Since the DiskSpaceTest_ex is to be run only by an

internal agent, select the Internal option against the Execution field.

Using the Integration Console plugin, you can add an internal or an external test, but you

cannot add tests that need to be run by a remote agent – i.e., tests that need to be executed

in an agentless manner.

Next, as the DiskSpaceTest_ex is to be run at the system level, select No against Port based to enable it to be

associated with any of the component types.

Add ing /Mod if ying Tests us ing the Integrat ion Console

40

Figure 2.34: Providing the details of the new test of type Script/Batch File

If the test is to be associated with a shell script file, choose Unix as the OS type. If the test is to be associated with a

batch file/VB/powershell script, choose the Windows option. Our DiskSpaceTest_ex is associated with a script, and

hence, the Unix option needs to be chosen. Then, click the Add button.

The Parameter tab page will automatically open (see Figure 2.35). To add a new parameter, click the Add New

Parameter button. However, as the DiskSpaceTest_ex does not take any parameters, click the Measure tab page in

Figure 2.35.

Figure 2.35: The Parameter tab page of the DiskSpaceTest_ex

Click the Add New Measure button in the Measure tab page of Figure 2.36 to add a measure for the

DiskSpaceTest_ex.

Figure 2.36: The Measure tab page of the DiskSpaceTest_ex

Figure 2.37 will then appear, using which you can configure the new measure for the DiskSpaceTest_ex. As the test

should indicate the percentage of disk space utilized, add PercentUtil as the only measure of this test. Therefore,

specify PercentUtil as the Measure name. Then, specify the Database column size, the Unit, Conversion Factor, and

the Alarm display string in the same manner as discussed in the previous section.

Add ing /Mod if ying Tests us ing the Integrat ion Console

41

Figure 2.37: Specification of a measure (PercentUtil) of the DiskSpaceTest_ex

In addition to the above, this test type requests the specification of a Process method. By selecting an option from

the Process method list box, you can indicate the processing that must be performed on the script / batch file’s

output before passing the results to the eG agent. The options offered by this list box are:

Option Information

UNALTERED Selecting this option will ensure that no additional information is displayed along

with the specified measure in the monitor console. In other words the Current

Value of the measure is displayed.

PERCENT_INCREASE Selecting this option will display the percentage by which the current value of the

measure exceeds its previous value (i.e. the value of the measure during the

previous test execution). While an increase displays a positive value, a decrease

will display a negative value. The formula used is:

[(Current Value – Previous Value) / Previous Value] * 100

PERCENT_DECREASE This option will display the percentage by which the current value of the measure

falls below its previous value. While a decrease displays a positive value, an

increase will display a negative value.

[(Previous Value – Current Value) / Previous Value] * 100

PERCENT_CHANGE This displays the percentage change between the current value and the previous

value.

ABS[(Current Value – Previous Value) / Previous Value] * 100

RATIO This displays the ratio of the current value of the measure over its previous value.

(Current Value / Previous Value)

RATE This displays the result of the following formula:

(Current Value - Previous Value) / Time since the last measurement

DIFFERENCE This displays the absolute value of the difference between the current value and

the previous value.

ABS(Current Value – Previous Value)

Add ing /Mod if ying Tests us ing the Integrat ion Console

42

By default, UNALTERED is selected as the Process method. In the DiskSpaceTest_ex example, no further processing is

required. Hence, the default selection is left as is. Finally, click the Add button to add the measure.

When you are prompted to add more measures for the test (see Figure 2.38), click No to stop adding any more

measures; this is because, the DiskSpaceTest_ex in our example reports only one measure.

Figure 2.38: A message box requesting your confirmation to continue adding measures for the NetShare_cf_ex test

Doing so will instantly open the Generate tab page (see Figure 2.39). Here, proceed to specify the Path of

script/batch File (see Figure 2.39) associated with the test. Multiple script / batch file paths can also be specified, but

remember to separate each entry using a comma.

Figure 2.39: Generating a test of type Script/Batch File

While associating a test with multiple script / batch files, make sure that the “main” script

that needs to be executed is specified last. Otherwise, no measures will be reported by the

eG Enterprise system.

Any script used for a Script/Batch File test should provide one or more lines of output. If a test is descriptor-based, it

can have multiple lines of output, with the first entry of each line being the descriptor. In case of scripts other than

VB/powershell scripts, the descriptor and its corresponding measures are separated by whitespaces (space or tab),

as shown below:

Output of a (non-VB/non-powershell) script for a descriptor-based test

DESC 1 Value 1 Value 2 . Value N

DESC 2 Value 1 Value 2 . Value N

 .

 .

DESC N Value 1 Value 2 . Value N

Add ing /Mod if ying Tests us ing the Integrat ion Console

43

In case of VB/powershell scripts on the other hand, the descriptor and its corresponding measures are separated by

“:”, as shown below:

Output of a VB/powershell script for a descriptor-based test

DESC 1:Value 1:Value 2:…:Value N

DESC 2:Value 1:Value 2: …:Value N

 .

 .

DESC N:Value 1:Value 2:…:Value N

The DiskSpaceTest_ex we have configured is a descriptor-based test and hence, its output would be of the following

format (if the script associated with this test is not a VB/powershell script):

/tmp 30

/boot 22

/usr 12

In the above output, /tmp, /boot and /usr are some of the descriptors for the DiskSpaceTest_ex and 30, 22 and 12

are the values of the PercentUtil measure of each of these descriptors. For example, for the /tmp descriptor, the disk

space utilized is 30%.

If a test is not descriptor-based, then the script should report only one line of output. The first entry of this line

should be “NONE”.

Output of a (non-VB/non-powershell) script for a non-descriptor-based test

NONE Value 1 Value 2 . Value N

Output of a VB/powershell script for a non-descriptor-based test

ine ine ntat

NONE:Value 1:Value 2:…: Value N

If the DiskSpaceTest_ex we have configured is a non-descriptor-based test, its output would be of the following

format (provided, a VB/powershell script is not associated with this test):

NONE 30

A script on Linux would look like this:

#!/bin/sh

df -k | grep “/” | awk ‘{print $6 “ “ $5 -1}’

A sample powershell script has also been provided below:

$services = get-service

foreach($service in $services)

{

$name = $service.displayname

$status = $service.status

if($status -eq “Running”)

 {

$value = 100

Add ing /Mod if ying Tests us ing the Integrat ion Console

44

 }

else

 {

$value = 0

 }

Write-Host($name,$value) -Separator “:”

}

The above script implements a descriptor-based test. This script reports the status of each of the services available

on a Windows host.

Find below a sample non-descriptor-based powershell script:

$x = Get-Random -minimum 50 -maximum 101

$y = Get-Random -minimum 25 -maximum 50

$z = $x + $y

$w = $x - $y

Write-Host($x,$y,$z,$w) -Separator “:”

The above script reports random I/O-related measurements pertaining to a target Windows host.

Powershell scripts can be executed on only those targets that have Powershell SDK v1/v2

installed.

All the scripts sampled above (the Linux script and the powershell scripts) did not take any arguments. To offer more

flexibility in script execution, the Integration Console allows a user to specify multiple arguments for a script/batch

file test. When the script/batch file is executed each time, the test’s arguments are passed to the script/batch file.

Note that the arguments are typically passed to a script with a hyphen (i.e., ‘-‘) preceding them. Each argument is

expected to be followed by its value (e.g., -argument1 <argument1Val> -argument2 <argument2Val>). The

script/batch file has to parse the arguments that are passed to it at the time of invocation and perform the

appropriate functions. The following example provides an illustration of how a Linux shell script can parse the

arguments provided to it:

#!/bin/sh

This is an example of a simple script that processes its arguments.

This script takes two arguments and outputs the values of the arguments.

out1=””;

out2=””;

#out1 and out2 are output variables

while [$# -ge 1]

do

case $1 in

• argument1) shift; out1=$1;; # if the current argument is argument1

• argument2) shift; out2=$1;; # if the current argument is argument2

esac

shift;

Add ing /Mod if ying Tests us ing the Integrat ion Console

45

done

echo “NONE $out1 $out2”

If the script files are present in a remote location, then you can upload them to the eG manager, by clicking on the

Choose button adjacent to the Path of script/batch File text box in Figure 2.39. This will invoke a pop-up window

using which you can Browse for the files and specify their location. Finally, click on the Upload button in the pop-up

window, to upload the script/batch files in the remote location to the eG manager. However, if the files have already

been uploaded to the eG manager, then this procedure can be dispensed with. Instead, just specify the location of

the files against the Path of script/batch File text box.

Select the Load file (see Figure 2.39) check box if:

 The specified script/batch file has been modified, or

 The measures are being associated with the script/batch file for the very first time

If the script/batch file has changed, then selecting the Load file check box will ensure that when the test runs, the

agent downloads the revised version of the file from the manager, and executes the same. This in turn ensures that

the changes take effect. While associating the script/batch file with the test for the first time, it is mandatory to

select this check box, as doing so enables the agent to download the file along with the measurements during test

execution.

Finally, click the Generate button in Figure 2.39 to generate the test.

When a test’s measurements are successfully configured and the associated script/batch file has been added to the

eG Enterprise system, the eG Enterprise system prompts you to specify the default threshold settings for each of the

measurements made by the newly added test (see Figure 2.40). Click on the measure name in Figure 2.40 to

configure its thresholds.

Figure 2.40: Specifying the threshold values of the measures of the DiskSpaceTest_ex

2.3 Adding an SQL Query/Stored Procedure-based Test
Many applications store critical statistics in a database. To simplify the writing of tests, the Integration Console

includes an SQL Query test type that allows a user to include a new test that retrieves measures by simply executing

a sql query / stored procedure on the database, instead of writing elaborate java code.

2.3.1 Using a SQL Query

To understand this concept better, consider an example. In this example, a new test named SqlTest of type Sql

Query will be created, which will be configured to measure the number of current users to a custom application. This

application is executing on a host with IP address 192.168.10.8, and uses an Oracle database executing on the same

system (192.168.10.8) as its back end. This example will demonstrate how application-specific metrics stored in the

database can be retrieved using a SQL query and integrated into the eG Enterprise system.

Add ing /Mod if ying Tests us ing the Integrat ion Console

46

To add this test, first, click the Add New Test button in the INTEGRATION CONSOLE - TEST page (see Figure 2.2). In the

NEW TEST DETAILS page (see Figure 2.41) that appears next, specify the following:

 Test name: SqlTest_ex

While adding a new test using the Integration Console, ensure that the Test

name always ends with _ex. If not, an error message (see Figure 2.3) will appear

upon clicking the Add button in Figure 2.41.

 Duplicate: Since the new test is not a duplicate of any existing test, set the Duplicate flag to No.

 Execution: Internal, as the test is to be executed by an internal agent

Using the Integration Console plugin, you can add an internal or an external test, but

you cannot add tests that need to be run by a remote agent – i.e., tests that need to

be executed in an agentless manner.

 Port based: Since the Webmall application is not listening on a specific TCP port, select No against the

Port based input selection.

 Test type: Sql Query

 DB type: If the query is to be executed on an Oracle database, select Oracle from this list box. On the

other hand, if the query is to be executed on an MS SQL database, select MsSql from the list box.

Similarly, if the query is to be retrieve data from a Sybase, MySql, DB2, or a PostgreSQL database,

then, choose Sybase, MySql, DB2, or PostGres from the list box. For our example, select Oracle. Then,

click the Add button.

Figure 2.41: Providing the new test details

Next, using Figure 2.42, the parameters to the test need to be specified. To add the new parameter, click the Add

New Parameter button in Figure 2.42.

Add ing /Mod if ying Tests us ing the Integrat ion Console

47

Figure 2.42: Modifying the details of the SqlTest_ex

As the SqlTest_ex will not be taking any parameters, simply proceed to configure the measures for this test by

clicking the Measure tab page in Figure 2.42. When Figure 2.43 appears, click the Add New Measure in Figure 2.43 to

open the NEW MEASURE DETAILS pop-up (see Figure 2.44).

Figure 2.43: The Measure tab page reporting that no measures have been configured for the SQL query-based test

Figure 2.44: Adding the CurrentUsers measure for the SQL query-based test

Add ing /Mod if ying Tests us ing the Integrat ion Console

48

Figure 2.44 shows how a measurement of the Sql Query test type is specified using the NEW MEASURE DETAILS pop-

up. To generate measures pertaining to the number of users, create a measure named CurrentUsers. Accordingly,

specify the Measure name, the Database column size, the Unit, Conversion Factor, and the Process method (see

Figure 2.44).

To know more about the Process method, refer to Page 41 of this document.

To know more about the Conversion factor, refer to Page 12 of this document.

Since we do not want to associate an alarm description with this measure, leave the Alarm display string field blank

(see Figure 2.44).

Finally, click on the Add button in Figure 2.44 to add the measure. When prompted to add more measures for the

SQLTest_ex, click No to stop configuring any more measures (see Figure Figure 2.10). Clicking No will instantly lead

you to the Generate tab page (see Figure 2.45).

Figure 2.45: Specifying the Sql query associated with the SqlTest_ex

In Figure 2.45, specify the SQL query that will, on execution, fetch the number of current users. Finally, click the

Generate button to integrate the test’s implementation into the eG Enterprise system. You can even click on the Add

Help button therein to create and upload Admin and Monitor help pages for the new test. To know how, refer to

Section 2.1.2 of this document.

An Sql Query test can be both descriptor-based and non-descriptor based. For example, the following query returns a

descriptor-based ouput. The query retrieves from a table named metatest the number of records that carry the same

value in a field named info.

select substr(info, 2), count(*) from metatest where info<>’+’ group by info

For a descriptor-based test, the first value of the results of the query must be a string. The other results should be

integer or double values. If the first value of a query’s result is not a string, the test is not descriptor-based and only

the first row of the result set will be used.

An Sql query can return multiple outputs. For example:

select read_rate, write_rate from disktest where msmt_time=(select max(msmt_time) from

disktest) and info=’+/’

When a test’s measurements are successfully configured, the eG Enterprise system prompts the user to specify the

default threshold settings for each of the measurements made by the newly added test (see Figure 2.46).

Add ing /Mod if ying Tests us ing the Integrat ion Console

49

Figure 2.46: Specifying the threshold values of the CurrentUsers measure

2.3.2 Using Stored Procedure

Typically, large or complex processing that might require the execution of several SQL statements is moved into

stored procedures. You might choose a stored procedure over a SQL query, if:

 you want to execute multiple SQL queries, simultaneously

 you not only want to query metrics from the database, but also intend to perform mathematical

computations on the result set and display the net output in the eG monitor interface.

To help you clearly understand how a stored procedure can be used to build a test’s functionality, let us take another

example. In this example, we would be attempting to create an ‘info-based’ test, which will execute a stored

procedure on an MS SQL server database; this stored procedure will take a HOST IP from the user, calculate the

average CPU utilization of every processor on the given HOST, and report the computations to the eG manager.

To add the new test, first click the Test option in the Integration Console tile. Then, click on the Add New Test button

in the INTEGRATION CONSOLE - TEST page that appears (see Figure Figure 2.2) that opens next. In the NEW TEST

DETAILS page (see Figure 2.47), specify the following:

 Test name: AvgCpuUtilTest_ex

While adding a new test using the Integration Console, ensure that the Test

name always ends with _ex. If not, an error message (see Figure 2.3) will appear

upon clicking the Add button in Figure 2.47.

 Duplicate: Since the new test is not a duplicate of any existing test, set the Duplicate flag to No.

 Execution: Internal, as the test is to be executed by an internal agent

Using the Integration Console plugin, you can add an internal or an external test, but you

cannot add tests that need to be run by a remote agent – i.e., tests that need to be executed

in an agentless manner.

Add ing /Mod if ying Tests us ing the Integrat ion Console

50

 Port based: Select No against the Port based input selection.

 Test type: Sql Query

 DB type: For our example, select MsSQL from the list box. The other options are Oracle, Sybase,

MySql, DB2, and PostGres.

Figure 2.47: Providing the details of the SQL stored procedure-based test

Once the test details are specified in the TEST tab page of Figure 2.47, click the Add button to add the new test. This

will automatically take you to the Parameter tab page, where the parameters to the test need to be specified. To add

new test parameters, click the Add New Parameter button in Figure 2.48. This will invoke the NEW TEST PARAMETERS

pop-up (see Figure 2.48).

Figure 2.48: Adding a new test parameter for the SQL stored procedure-based test

Since the AvgCpuUtilTest_ex takes the IP address of a monitored host as its parameter, specify TargetHost against

Parameter, and click the Add button in the NEW TEST PARAMETERS pop-up. eG will now request you to confirm

whether/not you want to add more parameters to the test. As the AvgCpuUtilTest_ex in our example does not take

any more parameters, click No in the message box to stop adding parameters. You will now return to the Parameter

tab page, where you can quickly review your parameter settings (see Figure 2.49).

Figure 2.49: Reviewing the parameter specification of the SQL stored procedure-based test

Add ing /Mod if ying Tests us ing the Integrat ion Console

51

Then, click the Measure tab page to configure the measures of the test. Figure 2.50 will then appear.

Figure 2.50: The Measure tab page indicating that no measures have been configured yet for the SQL stored
procedure-based test

Click the Add New Measure button to add a new measure for the test. The NEW MEASURE DETAILS (see Figure 2.51)

will then pop up. To generate a measure that indicates the average CPU utilization of a processor, create a measure

with the Measure name, Avg_cpu_util. Also provide the Database column size, Unit, Conversion Factor and the

Process method specifications as indicated by Figure 2.51.

To know more about the Process method, refer to Page 41 of this document.

To know more about the Conversion factor, refer to Page 12 of this document.

Figure 2.51: Adding the Avg_cpu_util measure of the SQL stored procedure-based test

Likewise, specify an Alarm display string similar to the one provided in Figure 2.51.

After specifying all the required details, click on the Add button in Figure 2.51 to add the measure. You will then be

prompted to indicate whether/not you want to continue adding measures for the test. Since the AvgCpuUtilTest_ex in

our example does not report any more measures, click No against the prompt to stop adding more measures. This

will lead you to Figure 2.52.

Add ing /Mod if ying Tests us ing the Integrat ion Console

52

Figure 2.52: Specifying the stored procedure associated with the Ag_cpu_util measure

Against the SQL query field in Figure 2.52, issue the command for invoking a stored procedure named avgCpuUtil,

and click the Generate button (see Figure 2.52).

The avgCpuUtil stored procedure has been specifically created for the purpose of our example, and performs the

following tasks:

 Retrieves the CPU utilization metrics for every processor that a specified host supports, from the

systemtest table in the MS SQL database

 Computes the average of the CPU utilization metrics per processor

Typically, the syntax for the command to be issued to execute a stored procedure is: StoredProcedurename. In our

example however, the stored procedure accepts a Host IP from the user and retrieves the CPU usage statistics that

correspond to the given IP address. To execute a stored procedure that supports input parameters/arguments (such

as the one in our example), you should use the command: StoredProcedureName <<Argument>>. In the case of

our example therefore, the command would be: avgCpuUtil <<TargetHost>>, where avgCpuUtil is the name of the

stored procedure, and TargetHost is the name of the parameter that the procedure supports.

The arguments/parameters that are passed to a stored proocedure are case-sensitive, and

should always be enclosed within angular brackets (<<>>). This implies that the Argument

provided in the command should be of the same case as the parameter configured for the

AvgCpuUtilTest_ex in Figure 2.48. Therefore, the parameter TargetHost should be expressed

as <<TargetHost>> in the command.

A stored procedure that is executed on an MS SQL database can take any number of arguments, and returns a result

set. A result set with multiple columns, where the first column contains character values, is said to be ‘info-based’.

On the other hand, if a result set consists of multiple columns, and all columns support only numeric values, then

such a result set is said to be ‘non-info-based’.

A Stored Procedure on MS SQL that returns an ‘Info-based’ result set:

An info based test will typically return multiple rows of output, with each row representing the metrics for a particular

info. A non-info based test, on the contrary, will always have a single row of output.

In case of a non-info-based test therefore:

The total number of measures for the test = The total number of columns returned by the query

In case of an info-based test:

The total number of measures for the test = (The total number of columns in the query output) - 1.

The first column of an info-based result set represents the name of the info.

Add ing /Mod if ying Tests us ing the Integrat ion Console

53

Since the stored procedure in our example needs to return one set of measures for every processor supported by a

given TargetHost, it should return an info-based result set. Given below is the stored procedure, avgCpuUtil, which

has been created on the MS SQL server database for the purpose of our example:

CREATE PROCEDURE avgCpuUtil @host varchar(30)

 as

 SELECT ‘Processor_’+info, avg(cpu_util) Avg_cpu_util

 FROM systemtest

 WHERE trgt_host=@host

 GROUP BY info

 ORDER BY info

Note that the stored procedure takes the argument, @host. You can see that the value for this argument is matched

with the value of the trgt_host column in the systemtest table. trgt_host is a column in the systemtest table, which

holds the IP address of the monitored hosts. While configuring the AvgCpuUtilTest_ex using the eG administrative

interface, you will be required to pass a value to the TARGETHOST parameter of the test. When the stored procedure

executes, it assigns the TARGETHOST value to the @host argument, and then compares the @host value with the

values in the trgt_host column. Once a match is found, the procedure retrieves the processor names and CPU usage

statistics that correspond to that trgt_host from the systemtest table, computes the average CPU usage for every

processor, and returns the resultant value to the alias, Avg_cpu_util - this is nothing but the measure that we had

configured in Figure 2.51.

A Stored Procedure on MS SQL that returns a ‘Non-info-based’ result set:

Let us also see how a non-info-based stored procedure is to be constructed. When a stored procedure returns a

result set comprising of multiple columns, all of which contain only numeric values, then this is a ‘non-info-based’

stored procedure. For example, assume that you need to create a stored procedure that computes the average CPU

utilization of a host across processors (and not per processor). Such a stored procedure is ‘non-info-based’, and can

be coded as follows:

CREATE PROCEDURE avgCpuUtil @host varchar(30)

 as

 SELECT avg(cpu_util) Avg_cpu_util

 FROM systemtest

 WHERE trgt_host=@host

A Stored Procedure on Oracle:

The broad steps that you should follow for creating a stored procedure on Oracle are as follows:

1. First, you have to create a package of type CURSOR in the Oracle database from which the metrics are to be

extracted.

2. Next, you should write a function that returns a cursor of that type.

For instance, to write a stored procedure that should return the average CPU usage of every processor on a specific

host, you should follow the steps given below:

1. Create a package named, say, cpuUtilAvg_pack of type cpuUtilAvg_cursor in the Oracle database from which

the metrics are to be extracted

CREATE OR REPLACE PACKAGE cpuUtilAvg_pack

AS

mailto:trgt_host=@host

Add ing /Mod if ying Tests us ing the Integrat ion Console

54

TYPE cpuUtilAvg_cursor IS REF CURSOR;

END cpuUtilAvg_pack;

2. Then, write a function that returns a cursor of type cpuUtilAvg_cursor

CREATE OR REPLACE PROCEDURE cpuUtilAvg_procedure (host IN

systemtest.trgt_host%TYPE, resultCursor OUT cpuUtilAvg_pack.cpuUtilAvg_cursor)

AS

BEGIN

 OPEN resultCursor

 FOR

 SELECT decode(info,’+’,’DEFAULT’,info) as info, avg(cpu_util) from systemtest

WHERE trgt_host = host GROUP BY info ORDER BY info;

END cpuUtilAvg_procedure;

The above lines of code create a stored procedure named cpuUtilAvg_procedure, which performs the following

functions:

o Queries the average CPU utilization of a given host

o Groups the CPU usage value by processor

o Returns the results to the cursor, <packagename>.<packagetype> - i.e.,

cpuUtilAvg_pack.cpuUtilAvg_cursor.

If there is no error in the generation of the stored procedure, the eG Enterprise system prompts the user to specify

the default threshold settings for the measurement made by the newly added test (see Figure 2.53).

Figure 2.53: Specifying the threshold values of the Avg_cpu_util measure

You can even click on the Add Help button therein to create and upload Admin and Monitor help pages for the new

test. To know how, refer to Section 2.1.2 of this document.

2.4 Adding a Perfmon-based Test
A test of the Perfmon type can be executed only on Windows environments. Various applications and services on

Windows environments expose critical performance statistics via perfmon counters. To allow an administrator to

monitor any perfmon counter without having to write elaborate programs, the Integration Console includes a

Perfmon test type.

Add ing /Mod if ying Tests us ing the Integrat ion Console

55

This section facilitates the easy understanding and effective implementation of the Perfmon test type, by taking the

help of an illustrated example.

In this example, a ProcessorTest_ex of type Perfmon will be created and its measures will be configured.

As before, begin adding a new test by selecting the Test option from the Integration Console tile. In the INTEGRATION

CONSOLE - TEST page that appears next, click the Add New Test button. The NEW TEST DETAILS page (see Figure 2.54)

appears, wherein the following details need to be provided for our example:

 Test name – ProcessorTest_ex

While adding a new test using the Integration Console, ensure that the Test

name always ends with _ex. If not, an error message (see Figure 2.3) will appear

upon clicking the Add button in Figure 2.54.

 Duplicate - Since the new test is not a duplicate of any existing test, set the Duplicate flag to No.

 Execution – Internal, as an internal agent will be executing the ProcessorTest_ex

Using the Integration Console plugin, you can add an internal or an external test,

but you cannot add tests that need to be run by a remote agent – i.e., tests that

need to be executed in an agentless manner.

 Port based – As the ProcessorTest_ex is to be run at the system level, select No against Port Based to

enable it to be associated with any of the server types.

 Test type - Perfmon

Figure 2.54: Adding a new test of type Perfmon

Then, click the Add button to add the new test to the eG Enterprise system. The Parameter tab page then opens (see

Figure 2.55). Since the ProcessorTest_ex in our example does not take any additional parameters, click the Measure

tab in Figure 2.55 to configure measures for the test.

Add ing /Mod if ying Tests us ing the Integrat ion Console

56

Figure 2.55: The Parameter tab page that appears when configuring a test of type Perfmon

Figure 2.56 will then appear. Click the Add New Measure button in Figure 2.56 to add a new measure for the test.

Figure 2.56: The Measure tab page indicating that no measures have been configured yet for the Perfmon Test

Figure 2.57 shows how a measurement of the Perfmon test type is specified. Here, specify Privileged_Time as the

Measure name. Then, mention the Database column size, the Unit, the Conversion Factor, and the Process method in

the same manner as discussed in the previous section. Here again, leave the Alarm display string blank.

To know more about the Process method, refer to Page 41 of this document.

To know more about the Conversion factor, refer to Page 12 of this document.

Add ing /Mod if ying Tests us ing the Integrat ion Console

57

Figure 2.57: Specification of the first output (Privileged_Time) of the ProcessorTest_ex of type Perfmon

In addition to the above, a Counter name text box exists (see Figure 2.57). Against this text box, enter the name of

the perfmon counter associated with the specified measure. The name of the perfmon counter should be the same

as that which appears in the Add Counters dialog box of the Performance console in a Microsoft Windows server (see

Figure 2.58).

Figure 2.58: The Add Counters dialog box

After specifying all the required details, click on the Add button in Figure 2.57 to add the first measure of the eG

Enterprise system. You will then be prompted to indicate whether you want to add more measures for the test. To

add another measure, click the Yes button at the prompt. The NEW MEASURE DETAILS window will pop up once again

(see Figure 2.59). Provide the details of the Processor_Time measure in Figure 2.59.

The counter that

corresponds to the

Privileged_Time

measure

The counter that

corresponds to the

Processor_Time

measure

Add ing /Mod if ying Tests us ing the Integrat ion Console

58

Figure 2.59: Specifying the object and instance names associated with the measures

Once the second measure is added, you will once again be prompted to indicate whether/not you want to add more

measures for the test. This time, click No at the prompt. This will automatically lead you to the Generate tab page

(see Figure 2.60).

Figure 2.60: Configuring the implementation of the Perfmon test

As shown in Figure 2.60, proceed to specify the following details:

 Object name – Enter the name of the performance object with which the specified measures are

associated. This information can be obtained from the Add Counters dialog box of the Performance

console in a Microsoft Windows server (see Figure 2.61).

Add ing /Mod if ying Tests us ing the Integrat ion Console

59

Figure 2.61: The Add Counters dialog box with a Performance object selected

 Instances to be included –Mention the specific instances of the measure that need to be monitored.

Separate the multiple instances by commas (,). The list of instances associated with a counter can be

obtained from the Add Counters dialog box of the Performance console in a Microsoft Windows server

(see Figure 2.61).

 Instances to be excluded – If the Instances to be included are large in number, specify the Instances to

be excluded instead. The eG Enterprise system can thus be instructed to consider all instances except

the ones specified against this field, during monitoring. The list of instances associated with a counter

can be obtained from the Add Counters dialog box of the Performance console in a Microsoft Windows

server. In our example, “0” has been specified against the Instances to be excluded text box (see

Figure 2.61). From Figure 2.61, we can infer that _Total and 0 are the two instances associated with

the % Privileged Time counter of the Processor performance object. The same instances are also

available for the % Processor Time counter. Our example however, requires the measures pertaining to

instance _Total only. Therefore, in order to exclude the instance “0”, the same has been specified in

the Instances to be excluded text box.

The Object names and names of Instances should be exactly the same as that

which appear in the Add Counters dialog box of the Windows Perfmon console.

Even the case and spaces should match. Otherwise, measures will not be

reported.

For more details on performance objects and instances, refer to the Microsoft Windows documentation.

Finally, click the Generate button to integrate the test’s implementation into the eG Enterprise system.

When a test’s measurements are successfully configured, the eG Enterprise system prompts the user to specify the

default threshold settings for each of the measurements made by the newly added test (see Figure 2.62).

The performance

object associated

with our example

The Instances

associated with the

selected counter

Add ing /Mod if ying Tests us ing the Integrat ion Console

60

Figure 2.62: Specifying the threshold values for the measures of the ProcessorTest_ex

2.5 Adding an SNMP-based Test
Most network devices and some applications support the Simple Network Management Protocol (SNMP). To make it

simple for administrators to monitor network devices and applications that are not supported out-of-the-box by eG

products, the Integration Console offers another programming-free test-type called the Snmp test type. Before

adding an Snmp test you should decide what objects from the Management Information Base (MIB) are to be

monitored.

To illustrate the Snmp test, we will be considering two examples. While the first example will help you configure a

non-descriptor based Snmp test, the second one will help you configure a descriptor-based Snmp test.

2.5.1 Adding a Non-Descriptor-Based SNMP Test

First, let us take the example of a Nortel (Bay Networks) switch that is available in your environment. This example

involves creating a BaySwitchTest, which will use the Nortel (Bay Networks) switch’s SNMP MIB to report the number

of services running on it.

Begin adding a new test by selecting the Test option from the Integration Console tile (see Figure 2.1). In the

INTEGRATION CONSOLE - TEST page that appears next, click the Add New Test button. The NEW TEST DETAILS page

(see Figure 2.63) appears, wherein the following details need to be provided for our example:

 Test name – BaySwitchTest_ex

While adding a new test using the Integration Console, ensure that the Test

name always ends with _ex. If not, an error message (see Figure 2.3) will appear

upon clicking the Add button in Figure 2.63.

 Duplicate - Since the new test is not a duplicate of any existing test, set the Duplicate flag to No.

 Execution – External, as an external agent will be executing the test

Add ing /Mod if ying Tests us ing the Integrat ion Console

61

Using the Integration Console plugin, you can add an internal or an external test,

but you cannot add tests that need to be run by a remote agent – i.e., tests that

need to be executed in an agentless manner.

 Port based – Indicate whether the target server is listening on a port or not. In our case, the Nortel

(Bay Networks) switch is not listening on a port.

 Test type - Snmp

Figure 2.63: Adding a new test of type Snmp

Then, click the Add button to add the new test to the eG Enterprise system. The Parameter tab page then opens

automatically (see Figure 2.64).

Figure 2.64: Viewing a summary of the details of the BaySwitchTest_ex

Note that, unlike other test types, by default the Snmp test type takes three parameters: snmpPort,

snmpCommunity, and snmpversion (see Figure 2.64), with default values 161, public, and v1 respectively. You

cannot delete these parameters, but they can be modified. Next, proceed to configure the measures for the

BaySwitchTest_ex by clicking on the Measure tab page in Figure 2.64.

Clicking the Add New Measure button in the Measure tab page will invoke the NEW MEASURE DETAILS pop-up depicted

by Figure 2.65. This figure shows how a measurement of the Snmp type is specified. The first measure,

No_of_services, represents the number of services running on the Nortel (Bay Networks) switch. Now, enter

No_of_services as the Measure name. Then, mention the Database column size, the Unit, the Conversion Factor, and

the Process method as shown in Figure 2.65. Once again, leave the Alarm display string blank.

Add ing /Mod if ying Tests us ing the Integrat ion Console

62

To know more about the Process method, refer to Page 41 of this document.

To know more about the Conversion factor, refer to Page 12 of this document.

Figure 2.65: Specification of the No_of_services measure for the BaySwitchTest_ex

In addition to the above, an Object OID text box exists (see Figure 2.65). In this text box, enter the object ID of the

specified measure. This object ID can be arrived at in either of the following ways:

 By manually “walking” the MIB tree of the application or network device of interest

 By uploading the SNMP MIB file of the application/network device to the eG manager and browsing the

MIB tree using the eG administrative interface

In this example, we will discuss both the methodologies.

D e t e r m i n i n g t h e O I D u s i n g S N M P W a l k

For the purpose of our example, let us use the standard MIB- interface supported by the Bay switch. The figure

below depicts a part of the MIB of relevance to this example:

Add ing /Mod if ying Tests us ing the Integrat ion Console

63

Figure 2.66: A portion of the MIB tree of the Bay switch

As shown in Figure 2.66, the MIB tree comprises of various nodes and sub-nodes, also referred to as “objects”. Note

that every object is accompanied by a numeric value. These numeric values, when put together in sequence using a

dotted notation, provide the unique “object ID” of an object.

For example, the ID of the Internet object in the above tree would be: .1.3.6.1. 1, 3 and 6 are the numbers

representing the objects that precede the Internet object (i.e. ISO, ORG and DOD respectively) in the MIB tree (see

Figure 2.66). The final 1 in the object ID represents the Internet object itself. By arranging these numbers in the

order of their occurrence in the MIB tree using the dotted notation, you will arrive at the ID of the Internet object.

You can arrive at the object ID of the No_of_services measure also in the same manner. The sysServices object in

the MIB tree (see Figure 2.66) returns the number of services currently running on the Bay switch. Therefore, the ID

of this object needs to be specified as the Object OID of the No_of_services measure. The dashed lines (-------) in

Figure 2.66 trace the path from the root of the MIB tree to the No_of_services object. Now, do the following:

 Follow the dashed lines closely and identify the objects through which the lines pass. In our example,

note that the lines pass through the following objects:

 ISO

 ORG

 DOD

 Internet

 Mgmt

ISO (1)

ORG (3)

DOD (6)

Internet (1)

MIB-2 (1)

Directory (1)

System (1)

sysServices

(7) (7)

Mgmt (2) Private (4) Experiment

(3)

Add ing /Mod if ying Tests us ing the Integrat ion Console

64

 MIB-2

 System

 sysServices

 Pick the numbers representing the objects. In our example, the numbers are:

 ISO : 1

 ORG : 3

 DOD : 6

 Internet : 1

 Mgmt : 2

 MIB-2 : 1

 System : 1

 sysServices : 7

 Note the order in which the above-mentioned objects appear in the MIB tree, and arrange the

corresponding numbers in the same order using the dotted notation

 You will now have the ID for the No_of_services measure, which is: .1.3.6.1.2.1.1.7.

Now, specify this ID in the Object OID text box of Figure 2.65.

Finally, click the Add button to add the new measure.

D e t e r m i n i n g t h e O I D u s i n g t h e M I B B r o w s e r

If you do not want to use the manual procedure for deducing the OID, then, you can determine the same quickly

and easily using the MIB Browser that is built-into the eG Enterprise system for browsing uploaded MIB files online.

To use the MIB browser, do the following:

1. For the purpose of our example, let us use the MIB browser for specifying the Object OID of the No_of_services

measure. For that, click on the button next to the Object OID text box in Figure 2.65. The MIB Browser will

then appear as depicted by Figure 2.67. To browse the MIB file that we uploaded, first, select it from the MIB

Files list in Figure 2.67. The MIB Files list contains all MIB files that have been uploaded to the eG manager. If

the MIB file of the Bay switch has not been uploaded to the manager yet, then click the Upload MIB button in

Figure 2.67.

Add ing /Mod if ying Tests us ing the Integrat ion Console

65

Figure 2.67: The MIB Browser

2. A pop-up window depicted by Figure 2.68 will then appear. In the File to upload text box, specify the full path

to the MIB file to be uploaded. You can use the Browse button to locate the MIB file of interest to you.

Figure 2.68: Specifying the full path to the MIB file to be uploaded

3. Once the MIB file path is specified, click the Upload button in Figure 2.67 upload the specified file to the eG

manager.

4. If upload is successful, then the newly uploaded MIB file will automatically appear selected in the MIB Files list

in the MIB Browser, as depicted by Figure 2.69. Upon selection of the MIB file, the MIB browser automatically

constructs a MIB tree using the SNMP MIB object definitions in the file. To determine the OID of the

No_of_services measure, drill down the MIB tree by expanding each of the nodes in the sequence, iso -> org -

> dod -> internet -> mib-2-> system -> sysservices (as depicted by Figure 2.69 and Figure 2.70).

Add ing /Mod if ying Tests us ing the Integrat ion Console

66

Figure 2.69: The MIB Files list displaying the newly uploaded MIB file

Figure 2.70: Expanding the MIB tree to figure out the OID of the No_of_services measure

5. Upon selecting a node, the MIB browser automatically determines the OID of that node and displays the same

against the OID field in Figure 2.70. Accordingly, once you drill down to the sysServices node, its complete OID

will be automatically deduced and displayed against the OID field. To insert this OID into the Object OID text box

Add ing /Mod if ying Tests us ing the Integrat ion Console

67

in the NEW MEASURE DETAILS page of Figure 2.65, just click the ok button in Figure 2.70.

You will then be prompted to confirm whether/not you want to add more measures. Click No here to stop adding

more measures. This will automatically lead you to the Generate tab page (see Figure 2.71).

Figure 2.71: Generating the test of type SNMP

The Generate tab page of Figure 2.71 reveals two options: Multiple elements and Single element. To configure a

descriptor-based test, select the Multiple elements option. In order to configure a non-descriptor-based test, select

the Single element option. In the case of the BayswitchTest_ex, the measurements do not involve access to the

SNMP table objects. Therefore, this test is a non-descriptor-based test. Hence, choose the Single element option for

our example.

Finally, click the Generate button to integrate the test’s implementation into the eG Enterprise system.

When a test’s measurements are successfully configured, the eG Enterprise system prompts the user to specify the

default threshold settings for each of the measurements made by the newly added test.

Figure 2.72: Configuring thresholds for the non-descriptor-based SNMP test newly created

2.5.2 Adding a Descriptor-based SNMP Test

To illustrate a descriptor-based Snmp test, consider another example. Say you have a BEA Tuxedo domain server

running. This example involves the creation of a TuxDomainTest_ex, which will use the Tuxedo server’s SNMP MIB to

report the number of machines and servers running in a Tuxedo domain.

Begin adding this test by selecting the Test option from the Integration Console tile (see Figure 2.1). In the

INTEGRATION CONSOLE - TEST page that appears next (see Figure 2.2), click the Add New Test button. The NEW TEST

DETAILS page (see Figure 2.73) appears, wherein the following details need to be provided for our example:

 Test name –TuxDomainTest_ex

Add ing /Mod if ying Tests us ing the Integrat ion Console

68

While adding a new test using the Integration Console, ensure that the Test

name always ends with _ex. If not, an error message (see Figure 2.3) will appear

upon clicking the Add button in Figure 2.73.

 Duplicate - Since the new test is not a duplicate of any existing test, set the Duplicate flag to No.

 Execution – External, as an external agent will be executing the test

 P

o

r

t based – Specify whether the target server listens on a port or not. In our case, the Tuxedo domain

server is not listening on a port.

 Test type - Snmp

Figure 2.73: Adding a descriptor-based test of type SNMP

Then, click the Add button in Figure 2.73 to add the new test to the eG Enterprise system. This will automatically

open the Parameter tab page (see Figure 2.74), where the default parameters of the SNMP-based test will be

displayed.

Using the Integration Console plugin, you can add an internal or an external test,

but you cannot add tests that need to be run by a remote agent – i.e., tests that

need to be executed in an agentless manner.

Add ing /Mod if ying Tests us ing the Integrat ion Console

69

Figure 2.74: Viewing the default parameters of the TuxedoDomainTest_ex

Since no additional parameters need be added to the new test, click the Measure tab page in Figure 2.74 to add

measures for the test. Figure 2.75 will then appear indicating that no measures have been configured for the test

yet.

Figure 2.75: The Measure tab page indicating that no measures have been configured yet for the descriptor-based
SNMP test

To add a new measure, click the Add New Measure button in Figure 2.75. The NEW MEASURE DETAILS page of Figure

2.76 will then appear, where you can specify the details of the new measure.

The first measure of the TuxDomainTest_ex in our example is Curr_machines. This represents the current number of

machines in the domain. Therefore, in the NEW MEASURE DETAILS page of Figure 2.76, specify Curr_machines as the

Measure name. Then, mention the Database column size, the Unit, the Conversion Factor, and the Process method as

shown in Figure 2.76 below. As before, leave the Alarm display string, blank.

Add ing /Mod if ying Tests us ing the Integrat ion Console

70

To know more about the Process method, refer to Page 41 of this document.

To know more about the Conversion factor, refer to Page 12 of this document.

Figure 2.76: Adding the Curr_machines measure to the eG Enterprise system

Then, in the Object OID text box, enter the object ID of the specified measure. Here again, you can either manually

specify the OID, or use the MIB browser that eG Enterprise provides. Let us begin with the manual procedure.

Figure 2.77 depicts a part of the MIB for the Tuxedo domain server.

ISO (1)

ORG (3)

DOD (6)

Internet (1)

Directory (1)

Enterprise

(1)

Bea (140)

Mgmt (2) Private (4) Experiment

(3)

Add ing /Mod if ying Tests us ing the Integrat ion Console

71

Figure 2.77: A portion of the MIB for the Tuxedo domain server

The tuxTDomain object in the tree is a table of entries, where each entry includes at least four attributes. The four

objects that you can see below the tuxTDomain object in Figure 2.77 are the attributes that are relevant to our

example. Of these:

 The tuxTDomainID attribute returns the domain identification string

 The tuxTDomainCurMachines attribute returns the number of machines currently available in the

Tuxedo domain

 The tuxTDomainCurServers attribute returns the number of servers currently available in the Tuxedo

domain

 The tuxTDomainState attribute returns the status of each of the servers in the Tuxedo domain

Since the tuxTDomainCurMachines object returns the number of machines currently available in the Tuxedo domain,

the ID of this object needs to be specified as the OBJECT OID of the Curr_machines measure. The dashed lines (-------

) in Figure 2.77 trace the path from the root of the MIB tree to the tuxTDomainCurMachines object. Now, do the

following:

 Follow the dashed lines closely and identify the objects through which the lines pass. In our example,

note that the lines pass through the following objects:

 ISO

 ORG

 DOD

 Internet

 Private

 Enterprise

 Bea

 Tuxedo

 tuxTDomain

Add ing /Mod if ying Tests us ing the Integrat ion Console

72

 tuxTDomainCurMachines

 Pick the numbers representing the objects. In our example, the numbers are:

 ISO - 1

 ORG - 3

 DOD - 6

 Internet - 1

 Private – 4

 Enterprise – 1

 Bea – 140

 Tuxedo – 300

 tuxTDomain – 3

 tuxTDomainCurMachines - 41

 Note the order in which the above-mentioned objects appear in the MIB tree and arrange the

corresponding numbers in the same order using the dotted notation.

 You will now have the ID for the Curr_machines measure, which is: .1.3.6.1.4.1.140.300.3.41.

Now, specify this ID in the Object OID text box of Figure 2.76. Finally, click the Add button to add the new measure.

On the other hand, if you want to use the MIB browser to determine the Object OID, then click on the button next

to the Object OID text box in Figure 2.76. The MIB Browser then appears. In the MIB browser, open the SNMP MIB

file of the Tuxedo Domain server, view the MIB tree, and drill down the MIB tree to determine the OID of the object.

The detailed procedure for navigating the MIB browser is available in page 64 of this document.

In order to use the MIB browser for specifying the OID of the Curr_machines measure, you

need to ensure that the SNMP MIB of the Tuxedo Domain Server is uploaded to the eG

manager.

Once the first measure is added, click the Add button in Figure 2.76 to add the measure. When prompted to add

more measures for the test, click the Yes button. Figure 2.78 will then appear, using which one more measure can

be added to the TuxDomainTest_ex.

Figure 2.78 depicts the procedure for adding the Curr_servers measure, which reports the number of servers

currently available in the Tuxedo domain.

Add ing /Mod if ying Tests us ing the Integrat ion Console

73

Figure 2.78: Adding the Curr_servers measure to the eG Enterprise system

Since the Curr_servers measure corresponds to the tuxTDomainCurServers attribute, the ID of this attribute has to

be specified as the Object OID of the Curr_servers measure. The dotted lines (…..) in Figure 2.77 trace the path from

the root of the MIB tree to the tuxTDomainCurServers object. Follow this path to arrive at the Object OID of the

Curr_servers measure. Accordingly, you will have the ID: .1.3.6.4.1.140.300.3.45. Specify the same against the

Object OID text box, click the Add button, and add the second measure also to the eG Enterprise system. When

prompted again to add more measures, click the No button. This will automatically lead you to the Generate tab page

(see Figure 2.79).

As before, the Generate tab page will reveal two options: Multiple elements and Single element. In our example, since

the measurements of the TuxDomainTest_ex involve access to SNMP table objects, the test is a descriptor-based

test. Hence, choose the Multiple elements option.

Figure 2.79: Configuring a descriptor-based TuxedoDomainTest_ex

In the resulting page (see Figure 2.79), provide the following details:

 Element ID(OID): Here, specify the ID of the object that supplies the descriptors for a test. For our

example, the descriptor is the identification string of the Tuxedo domain. To manually specify the OID

that reports the identification string, once again refer to the MIB tree in Figure 2.77. The object that

returns this string value is the tuxTDomainID object of the MIB tree. Using the MIB tree, you can

manually arrive at the ID of this object, and the same will be: .1.3.6.1.4.1.140.300.3.5.

To use the MIB browser instead, click on the button next to the Element ID (OID) text box in Figure

2.79. In the MIB browser that then appears, open the SNMP MIB file of the Tuxedo Domain server,

Add ing /Mod if ying Tests us ing the Integrat ion Console

74

view the MIB tree, and drill down the MIB tree to determine the OID of the object that returns the

descriptors of the TuxDomainTest_ex. For the detailed procedure, refer to page 64 of this document.

 Element status(OID): In this text box, specify the ID of the object that returns the status of the

descriptor. This specification combined with that of the Element Valid Status (Value) field form a filter

condition that will enable you to view the measures pertaining to only those elements that are in a

particular state. Such a condition is optional. Therefore, if filtering is not required, you can specify none

in both these text boxes. In our example, we need to view the measures pertaining to only the “active”

servers in the Tuxedo domain. Therefore, a filter condition is a must. Hence, specify the ID of the

tuxTDomainState object that returns the status (whether active or inactive) of the servers in the Tuxedo

domain. Its ID, as inferred from the MIB tree (see Figure 2.77) is .1.3.6.1.4.1.140.300.3.4. To

browse the MIB tree using the MIB browser, click on the button next to the Element status (OID) text

box in Figure 2.79. For the detailed procedure to use the browser, refer to page 64 of this document.

In order to use the MIB browser for specifying the Element ID (OID) and the

Element status (OID), you need to ensure that the SNMP MIB of the Tuxedo

Domain Server is uploaded to the eG manager.

 Element valid status (Value): Specify the value that indicates the state of the descriptor. As mentioned

already, if filtering is not required, you can specify none here. In our example, the value 1 indicates that

the server is active and value 0 indicates that it is inactive. As we require only the measures pertaining

to active servers, specify 1 here.

 Rediscovery period (In mins): Specify the frequency with which rediscovery needs to occur. By default,

this is 60 minutes. For our example, the default frequency is to be retained.

Now, click the Generate button to integrate the test’s implementation into the eG Enterprise system. When a test’s

measurements are successfully configured, the eG Enterprise system prompts the user to specify the default

threshold settings for each of the measurements made by the newly added test.

Figure 2.80: Configuring thresholds for the measures of the descriptor-based SNMP test

2.6 Adding a JMX-based Test
Most enterprises have custom developed application components running directly on the JVM directly or hosted on

standard, off-the-shelf middleware application servers (such as WebLogic, WebSphere, JBoss, etc.). While monitoring

the JVM or the web application servers provides visibility into the core engines that support the Java applications, it

does not provide any information on the custom application components. Java Management eXtensions (JMX)

offers a standard way by which applications can expose custom metrics for monitoring tools. Many custom

applications use JMX to publish information about their functioning to third party monitoring applications.

Add ing /Mod if ying Tests us ing the Integrat ion Console

75

The eG Integration Console has now been enhanced to collect and report on applications that offer JMX-based

interfaces. Administrators now have a new Jmx option, using which they can specify the specific JMX attributes that

the eG agents must collect to monitor their custom applications. Administrators can specify the JMX attribute name

and the specific MBeans to be monitored, and the eG agent takes care of periodically polling these attributes and

reporting the metrics back to the eG Enterprise console. This capability offers administrators a quick and easy way to

integrate monitoring of their custom Java applications into the enterprise management console.

This section takes the help of an example to help you understand how a test of type Jmx can be built. The Jmx test

to be added for this purpose will be connecting to a custom Java application and reporting the following to indicate

how the JVM of that application uses its heap memory.

The sections that follow will discuss how this can be achieved.

2.6.1 Enabling JMX Support for the JRE of the Target Application

Prior to adding a new Jmx test, you need to enable the JMX support for the JRE of the target application. The steps

for the same differ according to the authentication/security status of JMX. By default, JMX requires no authentication

or security (SSL). In this case therefore, to use JMX for pulling out metrics from a target application, the following

will have to be done:

1. Login to the application host.

2. The <JAVA_HOME>\jre\lib\management folder used by the target application will typically contain the following

files:

o management.properties

o jmxremote.access

o jmxremote.password.template

o snmp.acl

3. Edit the managerment.properties file, and append the following lines to it:

com.sun.management.jmxremote.port=<Port No>

com.sun.management.jmxremote.ssl=false

com.sun.management.jmxremote.authenticate=false

For instance, if the JMX listens on port 9005, then the first line of the above specification would be:

com.sun.management.jmxremote.port=9005

4. Then, save the file.

5. Next, edit the start-up script of the target application, and add the following line to it:

• Dcom.sun.management.config.file=<management.properties_file_path>

6. For instance, on a Windows host, the <management.properties_file_path> can be expressed as:

D:\bea\jrockit_150_11\jre\lib\management.

7. On other hand, on a Unix/Linux/Solaris host, a sample <management.properties_file_path> specification will be

as follows: /usr/jdk1.5.0_05/jre/lib/management.

8. Save this script file too.

9. Next, during test configuration, do the following:

O Set JMX as the mode;

Add ing /Mod if ying Tests us ing the Integrat ion Console

76

o Set the port that you defined in step 3 above (in the management.properties file) as the jmx

remote port;

o • Set the user and password parameters to none.

o Update the test configuration.

On the other hand, if JMX requires only authentication (and no security), then the following steps will apply:

1. Login to the application host. If the application is executing on a Windows host, then, login to the host as a

local/domain administrator.

2. As stated earlier, the <JAVA_HOME>\jre\lib\management folder used by the target application will typically contain

the following files:

o management.properties

o jmxremote.access

o jmxremote.password.template

o snmp.acl.template

3. First, copy the jmxremote.password.template file to any other location on the host, rename it as as

jmxremote.password, and then, copy it back to the <JAVA_HOME>\jre\lib\management folder.

4. Next, edit the jmxremote.password file and the jmxremote.access file to create a user with read-write access to

the JMX. To know how to create such a user, refer to Section 2.6.1.1 of this document.

5. Then, proceed to make the jmxremote.password file secure by granting a single user “full access” to that file.

For monitoring applications executing on Windows in particular, only the Owner of the jmxremote.password file

should have full control of that file. To know how to grant this privilege to the Owner of the file, refer to Section

2.6.1.2.

6. In case of applications executing on Solaris / Linux hosts on the other hand, any user can be granted full access

to the jmxremote.password file, by following the steps below:

 Login to the host as the user who is to be granted full control of the jmxremote.password file.

 Issue the following command:

chmod 600 jmxremote.password

 This will automatically grant the login user full access to the jmxremote.password file.

7. Next, edit the management.properties file, and append the following lines to it:

com.sun.management.jmxremote.port=<Port No>

com.sun.management.jmxremote.ssl=false

com.sun.management.jmxremote.authenticate=true

com.sun.management.jmxremote.access.file=<Path of jmxremote.access>

com.sun.management.jmxremote.password.file=<Path of jmxremote.password>

For instance, assume that the JMX remote port is 9005, and the jmxremote.access and jmxremote.password files

exist in the following directory on a Windows host: D:\bea\jrockit_150_11\jre\lib\management. The specification

above will then read as follows:

com.sun.management.jmxremote.port=9005

com.sun.management.jmxremote.access.file=D:\\bea\\jrockit_150_11\\jre\\lib\\managem

ent\\jmxremote.access

Add ing /Mod if ying Tests us ing the Integrat ion Console

77

com.sun.management.jmxremote.password.file=D:\\bea\\jrockit_150_11\\jre\\lib\\manag

ement\\jmxremote.password

8. If the application in question is executing on a Unix/Solaris/Linux host, and the jmxremote.access and

jmxremote.password files reside in the /usr/jdk1.5.0_05/jre/lib/management folder of the host, then the last 2

lines of the specification will be:

com.sun.management.jmxremote.access.file=/usr/jdk1.5.0_05/jre/lib/management/jmxrem

ote.access

com.sun.management.jmxremote.password.file=/usr/jdk1.5.0_05/jre/lib/management/jmxr

emote.password

9. Finally, save the file.

10. Then, edit the start-up script of the target application, include the following line in it, and save the file:

• Dcom.sun.management.config.file=<management.properties_file_path>

11. For instance, on a Windows host, the <management.properties_file_path> can be expressed as:

D:\bea\jrockit_150_11\jre\lib\management.

12. On other hand, on a Unix/Linux/Solaris host, a sample <management.properties_file_path> specification will be

as follows: /usr/jdk1.5.0_05/jre/lib/management.

eG Enterprise cannot use JMX that requires both authentication and security (SSL), for

monitoring the target Java application.

2.6.1.1 Securing the ‘jmxremote.password’ file

To enable the eG agent to use JMX (that requires authentication only) for monitoring a Windows-based Java

application, you need to ensure that the jmxremote.password file in the <JAVA_HOME>\jre\lib\management folder used

by the target application is accessible only by the Owner of that file. To achieve this, do the following:

1. Login to the Windows host as a local/domain administrator.

2. Browse to the location of the jmxremote.password file using Windows Explorer.

3. Next, right-click on the jmxremote.password file and select the Properties option (see Figure 2.81).

Add ing /Mod if ying Tests us ing the Integrat ion Console

78

Figure 2.81: Selecting the Properties option

4. From Figure 2.82 that appears next, select the Security tab.

Figure 2.82: The Properties dialog box

However, if you are on Windows XP and the computer is not part of a domain, then the Security tab may be

missing. To reveal the Security tab, do the following:

o Open Windows Explorer, and choose Folder Options from the Tools menu.

o Select the View tab, scroll to the bottom of the Advanced Settings section, and clear the check

box next to Use Simple File Sharing.

Add ing /Mod if ying Tests us ing the Integrat ion Console

79

Figure 2.83: Deselecting the ‘Use simple file sharing’ option

o Click OK to apply the change

o When you restart Windows Explorer, the Security tab would be visible.

5. Next, select the Advanced button in the Security tab of Figure 2.84.

Figure 2.84: Clicking the Advanced button

Add ing /Mod if ying Tests us ing the Integrat ion Console

80

6. Select the Owner tab to see who the owner of the file is.

Figure 2.85: Verfying whether the Owner of the file is the same as the application Owner

7. Then, proceed to select the Permissions tab from Figure 2.86 to set the permissions. If the

jmxremote.password file has inherited its permissions from a parent directory that allows users or groups other

than the Owner to access the file, then clear the Inherit from parent the permission entries that apply to child

objects check box in Figure 2.86.

Add ing /Mod if ying Tests us ing the Integrat ion Console

81

Figure 2.86: Disinheriting permissions borrowed from a parent directory

8. At this point, you will be prompted to confirm whether the inherited permissions should be copied from the

parent or removed. Press the Copy button in Figure 2.87.

Figure 2.87: Copying the inherited permissions

9. Next, remove all permission entries that allow the jmxremote.password file to be accessed by users or groups

other than the file Owner. For this, click the user or group and press the Remove button in Figure 2.87. At the

end of this exercise, only a single permission entry granting Full Control to the owner should remain in Figure

2.88.

Add ing /Mod if ying Tests us ing the Integrat ion Console

82

Figure 2.88: Granting full control to the file owner

10. Finally, click the Apply and OK buttons to register the changes. The password file is now secure, and can only

be accessed by the file owner.

2.6.1.2 Configuring the eG Agent to Support JMX Authentication

If the eG agent needs to use JMX for monitoring a Java application, and this JMX requires authentication only (and

not security), then any new JMX test created using the Integration Console component should be configured with the

credentials of a valid user to JMX, with read-write rights. The steps for creating such a user are detailed below:

1. Login to the application host. If the application being monitored is on a Windows host, then login as a

local/domain administrator to the host.

2. Go to the <JAVA_HOME>\jre\lib\management folder used by the target application to view the following files:

o management.properties

o jmxremote.access

o jmxremote.password.template

o snmp.acl.template

3. Copy the jmxremote.password.template file to a different location, rename it as jmxremote.password, and copy

it back to the <JAVA_HOME>\jre\lib\management folder.

4. Open the jmxremote.password file and scroll down to the end of the file. By default, you will find the

commented entries indicated by Figure 2.89 below:

Add ing /Mod if ying Tests us ing the Integrat ion Console

83

Figure 2.89: Scrolling down the jmxremote.password file to view 2 commented entries

5. The two entries indicated by Figure 2.89 are sample username password pairs with access to JMX. For instance,

in the first sample entry of Figure 2.89, monitorRole is the username and QED is the password corresponding to

monitorRole. Likewise, in the second line, the controlRole user takes the password R&D.

6. If you want to use one of these pre-defined username password pairs during test configuration, then simply

uncomment the corresponding entry by removing the # symbol preceding that entry. However, prior to that,

you need to determine what privileges have been granted to both these users. For that, open the

jmxremote.access file in the editor.

Figure 2.90: The jmxremote.access file

7. Scrolling down the file (as indicated by Figure 2.90) will reveal 2 lines, each corresponding to the sample

username available in the jmxremote.password file. Each line denotes the access rights of the corresponding

user. As is evident from Figure 2.90, the user monitorRole has only readonly rights, while user controlRole has

readwrite rights. Since the eG agent requires readwrite rights to be able to pull out key JVM-related statistics

using JMX, we will have to configure the test with the credentials of the user controlRole.

8. For that, first, edit the jmxremote.password file and uncomment the controlRole <password> line as depicted

by Figure 2.91.

Add ing /Mod if ying Tests us ing the Integrat ion Console

84

Figure 2.91: Uncommending the ‘controlRole’ line

9. Then, save the file. You can now proceed to configure the tests with the user name controlRole and password

R&D.

10. Alternatively, instead of going with these default credentials, you can create a new username password pair in

the jmxremote.password file, assign readwrite rights to this user in the jmxremote.access file, and then

configure the eG tests with the credentials of this new user. For instance, let us create a user john with

password john and assign readwrite rights to john.

11. For this purpose, first, edit the jmxremote.password file, and append the following line (see Figure 2.92) to it:

john john

Figure 2.92: Appending a new username password pair

12. Save the jmxremote.password file.

13. Then, edit the jmxremote.access file, and append the following line (see Figure 2.93) to it:

john readwrite

Add ing /Mod if ying Tests us ing the Integrat ion Console

85

Figure 2.93: Assigning rights to the new user in the jmxremote.access file

14. Then, save the jmxremote.access file.

15. Finally, proceed to configure the tests with the user name and password, john and john, respectively.

2.6.2 Adding a New Jmx Test

The next step involves the addition of the new test. For this purpose, first select the Test option from the Integration

Console tile. Click the Add New Test button in the INTEGRATION CONSOLE – TEST page that appears next.

Figure 2.94 will then appear.

Figure 2.94: Adding a new JMX test

In Figure 2.94, provide the Test name, set Duplicate to No as the new test is not a duplicate of any existing IC test,

indicate the Execution mode, and also mention whether the test is a Port based test or not. Finally, select Jmx from

the Test type list and click the Add button to add the test.

Using the Integration Console plugin, you can add an internal or an external test, but you

cannot add tests that need to be run by a remote agent – i.e., tests that need to be executed

in an agentless manner.

Add ing /Mod if ying Tests us ing the Integrat ion Console

86

This will automatically lead you to the Parameter tab page (see Figure 2.95).

Figure 2.95: Viewing the default parameters of the Jmx test

By default, any new test of type Jmx will take the following parameters:

 JMX_REMOTE_PORT: By default, this parameter is set to unconfigured. This implies that while

configuring the JavaHeapMemory_ex test for the javaapp application in our example, you should

manually configure this parameter with the port number at which JMX listens for requests from remote

hosts. During test configuration, ensure that you specify the same port that you configured in the

management.properties file; by default, this file will be in the <JAVA_HOME>\jre\lib\management folder

used by the target application (see page 75).

 JNDI_NAME: The JNDINAME is a lookup name for connecting to the JMX connector. By default, this is set

to jmxrmi. If you have registered the JMX connector in the RMI registery using a different lookup name,

then, while managing the javaapp application and configuring its tests, change this default value to

reflect the change in the lookup name.

 USER and PASSWORD: By default, both these parameters are set to none. However, if JMX requires

authentication only (but no security), then, at the time of configuring this test for the Javaapp

application (in our example), ensure that the USER and PASSWORD parameters are configured with the

credentials of a user with read-write access to JMX. To know how to create this user, refer to Section

2.6.1.2.

Since no additional parameters need to be added for the JavaHeapMemory_ex test in our example, simply click on

the Measure tab page in Figure 2.95 to add a new measure. Figure 2.96 will then appear.

Add ing /Mod if ying Tests us ing the Integrat ion Console

87

Figure 2.96: Adding a new measure for the new Jmx test

Figure 2.96 allows you the flexibility to choose from multiple methods for configuring the measures of the new Jmx

test; these methods are as follows:

 MBean Auto Discovery

 Load MBeans from File

 Manual Entry

To help you understand when and how each of these methods should be used, we will be taking the example of the

Heap_memory_used measure of this test and will illustrate how this measure can be added using each of the

methodologies listed above.

2.6.2.1 Adding a Measure Using MBean Auto Discovery

The MBean Auto Discovery option enables the eG manager to automatically discover the domains and MBeans

supported by a target Java application, so that you can configure any of the Mbean attributes as a measure with

minimal manual effort. Select this option if you do not know the exact Mbean attribute name to be configured as a

measure for a new JMX test. When this option is chosen, you will have to additionally specify the following in the

NEW TEST DETAILS page as depicted by Figure 2.97 below:

Figure 2.97: Configuring the auto-discovery of MBeans

 Host Name / IP: Specify the host name / IP address of the system hosting the javaapp in our example;

 Jmx Remote Port: Indicate the port at which the JMX of the javaapp in our example listens;

 JNDI name: Specify the lookup name for connecting to the JMX connector. By default, this is set to

jmxrmi.

 User name and Password: By default, both these parameters are set to none. However, if JMX requires

Add ing /Mod if ying Tests us ing the Integrat ion Console

88

authentication only (but no security), then, ensure that these fields are configured with the credentials

of a user with read-write access to JMX. To know how to create this user, refer to Section 2.6.1.2.

Finally, click the Start discovery button.

Doing so will automatically populate the Domain Name drop-down list with the complete list of domains supported by

the Java application in our example. From this list, pick the domain that contains the MBeans of interest to us – for

our example, pick java.lang as the domain (see Figure 2.98).

Figure 2.98: Selecting a domain for MBean discovery

To proceed with the configuration, click on the Configure button in Figure 2.98.

Doing so will invoke Figure 2.99 using which a new measure can be added. Let us begin by adding the

Heap_memory_used measure. In order to achieve this, follow the steps given below:

1. Specify Heap_memory_used as the Measure name.

2. Select Number(20.4) as the Database column size.

3. Pick MB as the Unit of the measurement.

4. Pick UNALTERED as the Process method.

To know more about the Process method, refer to Page 41 of this document.

5. Since java.lang has been chosen as the Domain name, the eG manager will automatically discover all the

MBeans that are available within java.lang, and will make them available for selection in the Mbean name list.

From this list, choose the MBean that reports memory-related statistics for the javaapp application in our

example. This would be Memory for our example.

Add ing /Mod if ying Tests us ing the Integrat ion Console

89

Once a Domain is chosen for a test, all the measures of that test should be based on the

MBeans and attributes within that domain only.

6. Upon selection of an Mbean name, all the attributes of the chosen Mbean will be automatically discovered and

displayed as the options of the Attribute name list. Now, from the Attribute name list, select the Mbean attribute

that reports how much heap memory has been utilized by the javaapp application in our example – for our

example, the attribute to be chosen is HeapMemoryUsage>used. Note that, by default, eG Enterprise monitors

the chosen ‘Attribute’ across all those MBeans to which it applies.

7. The chosen attribute reports heap memory usage in Bytes. However, the Unit of measurement that we have set

for the Heap_memory_used measure is MB. This implies that the eG manager should first convert the number

of bytes into MB and then display the final output in the eG monitoring console. To enable bytes to MB

conversion, you need to pick a Conversion Factor. The options available by default in the Conversion Factor

drop-down list, do not allow ‘Bytes to MB’ conversion. You can however include this capability into the eG

Enterprise system by following the steps discussed below:

 Edit the eg_ui.ini file in the <EG_INSTALL_DIR>\manager\config directory.

 To include a new conversion factor, you will have to append an entry of the following format to the

[CONVERSION_FACTORS] section of the file:

DisplayName=Value

 For instance, to support ‘Bytes to MB’ conversion, append the following entry to the

[CONVERSION_FACTORS} section:

/1048576 (Bytes to MB)=0.00000095367431640625

 In this case, the DisplayName, /1048576 (Bytes to MB), will be displayed as an option in the Conversion

Factor drop-down list. If this option is chosen, then, at test run time, the conversion value of

0.00000095367431640625 will be multiplied with the actual measure value that is reported in Bytes to

convert it into MB. Care should be taken while specifying the conversion value, as incorrect values will

result in wrong measures being reported by the test.

 Once the new entry is appended to the [CONVERSION_FACTORS] section, save the file.

 Once this is done, you will find the string /1048576 (Bytes to MB) appear as an option in the Conversion

Factor list. For the purpose of our example, pick this as the conversion factor.

8. Provide a brief description of the alarm in the Alarm display string text box.

9. Finally, click the Add button to add the new measure.

Add ing /Mod if ying Tests us ing the Integrat ion Console

90

Figure 2.99: Adding the Heap_memory_used measure of the Jmx test using the MBean auto-discovery method

2.6.2.2 Adding a New Measure by Loading MBeans from a File

For Mbean Autodiscovery to work, the eG manager should be able to access the target application. However, in

environments where connectivity issues exist between the eG manager and the target Java application say, owing to

strict firewall rules, autodiscovery of MBeans may not be possible. In such situations, you can enable the eG agent to

load the MBeans of an application onto a file, and then make that file available on the eG manager host, so that the

eG manager can download the MBeans from the file. The first step towards this end is to generate the file to which

MBeans are to be loaded.

The eG agent is bundled with an AgentMbeanDiscovery.bat file, which is available in the <EG_INSTALL_DIR>\lib

directory of the eG agent host. If this batch file is executed, it requests for information that enables access to the

target Java application; upon accessing the application, the batch file automatically discovers the MBeans of that

application and loads them on to a file.

Like the eG agent, the eG manager is also bundled with a batch file named MgrMbeanDiscovery.bat. This file is

available in the <EG_INSTALL_DIR>\lib directory of the eG manager host. The MgrMbeanDiscovery.bat file can be used

instead of the AgentMbeanDiscovery.bat, only if all the following conditions prevail:

 The target application should be available on the eG manager host, but the eG manager should not be

able to autodiscover the MBeans using the procedure discussed in Section 2.6.2.1

 No agent should be available on the eG manager host;

 No other agent should be able to access the target application.

For instance, you could have a redundant manager setup, where the target Java application executes on a secondary

manager host; this host may not have any agent executing on it. Moreover, for security reasons, the firewall could

have been configured in such a way that both the primary manager and the eG agents are denied access to the

target application.

In such a case, you may first consider auto-discovering the MBeans using the procedure discussed in Section 2.6.2.1.

Add ing /Mod if ying Tests us ing the Integrat ion Console

91

Since this requires access to the eG administrative interface, it cannot be performed from the secondary manager;

also, since firewall rules disallow the primary manager-Java application communication, autodiscovery cannot be

performed via the primary manager either. Moreover, as no agent has been deployed on the secondary manager

host and because the target application is inaccessible to all other agents, the AgentMbeanDiscovery.bat file too

cannot be used. In such a case, you can use the MgrMbeanDiscovery.bat file on the secondary manager host to load

the Mbeans of the application to a file.

Follow the steps below to load the MBeans of the application to a file using the AgentMbeanDiscovery.bat file:

1. Go to the command prompt of the agent host.

2. Switch to the <EG_INSTALL_DIR>\lib directory.

3. To load the MBeans of the javaapp application on to a file, issue the following command at the prompt:

AgentMbeanDiscovery.bat

4. Upon execution, the batch file will request you to specify the following:

Enter the Target Host IP:

Enter the Jmx port:

Enter the JNDIPath:

Enter the Username:

Enter the Password:

Specify the IP address of the target application, the JMX port at which the application listens, the JNDI lookup name of the JMX connector,
and the username and password of the JMX.

5. Based on the information provided, the batch file auto-discovers the MBeans of the application, generates a file

of the format MBeans_IpofApplication_JMXPort.txt in the <EG_AGENT_INSTALL_DIR>\lib directory, and copies the

discovered MBeans to the file.

6. Finally, make sure that the file so created is available in the <EG_MANAGER_INSTALL_DIR>\tmp folder on the eG

manager host. To achieve this, you can opt for either of the following:

a. You can quickly upload the file to the <EG_MANAGER_INSTALL_DIR>\tmp on the eG manager host from the

eG administrative interface;

b. You can manually copy the file so created to the <EG_MANAGER_INSTALL_DIR>\tmp directory on the eG

manager host

The MgrMbeanDiscovery.bat file is to be executed the same way as the

AgentMbeanDiscovery.bat. However, the difference in the case of the

MgrMbeanDiscovery.bat file is, you need to login to the eG manager host to run the batch

file, and the command to be executed is: MgrMbeanDiscovery.bat. Also, since the MBean

file will be created in the <EG_MANAGER_INSTALL_DIR>\lib directory, you do not have to

once again copy/upload the file to the eG manager host.

If you choose option (a) – i.e., if you choose to upload the file via the eG administrative interface – then follow the

procedure discussed in Section 2.6.2.2.1 to upload the file and to use it for configuring a measure. On the other

hand, if you have manually copied the file to the eG manager host (as suggested by option (b)), then, such a file will

pre-exist on the eG manager host at the time of measure configuration. To know how to use an existing MBean file

for configuring a measure, refer to Section 2.6.2.2.2.

2.6.2.2.1 Uploading an MBean File to the eG Manager Host and Using that File to
Add a New Measure

For our example, we will be configuring the Heap_memory_used measure using the Mbean attributes loaded from a

file. Now, proceed as discussed below:

Add ing /Mod if ying Tests us ing the Integrat ion Console

92

1. Select the Upload MBean File option in Figure 2.100 to upload the file to the eG manager host.

Figure 2.100: Selecting the option to load MBeans from a file

2. Next, specify the full path to the MBeans file that was generated previously in the Path of the file text box. To

browse for the file path and upload it, click the Upload button in Figure 2.100. Figure 2.101 will then appear.

Figure 2.101: Browsing for the file and uploading it

3. Click on the Browse button in Figure 2.101 to browse for the file path, and then click the Upload button therein

to upload the file.

4. If the file is successfully uploaded to the eG manager, then the path to which the file has been uploaded will be

displayed in the Path of the file text box as depicted by Figure 2.102.

Figure 2.102: The path to which the MBean file is uploaded being displayed against Path of the file

5. If a valid MBean file has been uploaded, then the eG Enterprise system will automatically discover the domains

from the uploaded file and display the same in the Domain Name list of Figure 2.102. To proceed with the

measure configuration, pick a domain from the list. For our example, pick java.lang as the Domain Name.

Add ing /Mod if ying Tests us ing the Integrat ion Console

93

If a test reports multiple measures, then the MBeans and/or attribute names mapped to

all such measures should belong to the same Domain.

6. Then, click the Configure button in Figure 2.102, so that the NEW MEASURE DETAILS window appears (see Figure

2.103).

Figure 2.103: Configuring the Heap_memory_used measure by loading MBeans from a file uploaded to the eG
manager

7. Configure the Heap_memory_used measure in the same way as discussed in Section 2.6.2.2.1.

8. Finally, click the Add button.

2.6.2.2.2 Adding a Measure Using an Existing MBean File

An MBean file may pre-exist in the <EG_MANAGER_INSTALL_DIR>\tmp directory in the eG manager host in the following

situations:

 The MBean file may have been manually copied to the eG manager host;

 The MBean file may have already been uploaded to the eG manager using steps 1 to 5 of Section

2.6.2.2.2.

 The MBean file may have been created using the MgrMbeanDiscovery.bat file (and not the

AgentMbeanDiscovery.bat)

To use an existing MBean file to configure a new measure for a JMX test, do the following:

Add ing /Mod if ying Tests us ing the Integrat ion Console

94

1. Select the Use Existing MBean File option (see Figure 2.104). Once this option is chosen, then all the MBean

files that pre-exist in the <EG_MANAGER_INSTALL_DIR>\tmp directory in the eG manager host will populate the

Path of the file drop-down. From this drop-down, select the file that you want to use for measure configuration.

Figure 2.104: Using an existing MBean file

2. Then, click the Get Domains button to get the domains. The eG Enterprise system will then automatically

discover the domains from the chosen file and display the same in the Domain Name list of Figure 2.105. Pick a

domain and and click the Configure button to proceed with the measure configuration.

Figure 2.105: Selecting a domain from the domains discovered from an existing MBean file

3. When Figure 2.106 appears, add the Heap_meory_used measure using the steps 1-9 in Section 2.6.2.1 of this

document.

Add ing /Mod if ying Tests us ing the Integrat ion Console

95

Figure 2.106: Adding the Heap_memory_used measure by discovering domains from an existing MBean file

4. Finally, click the Add button in Figure 2.106 to add the measure.

2.6.2.3 Adding a Measure Using the Manual Entry Method

Use the Manual Entry method if you know the exact domain, Mbean, and attribute that can report the measure you

want, and do not wish to needlessly auto-discover MBeans or load them from a file for this purpose.

For the purpose of our example, let us add the Heap_memory_used measure, but this time using the manual entry

method. To achieve this, first pick the Manual Entry option from Figure 2.97. Then, proceed to configure the measure

as depicted by Figure 2.107.

Figure 2.107: Configuring the Heap_memory_used measure manually

In Figure 2.107, specify the following:

Add ing /Mod if ying Tests us ing the Integrat ion Console

96

 Specify Heap_memory_used as the Measure name.

 Pick Number(20,4) as the Database column size.

 Choose MB as the Unit of measurement.

 Select UNALTERED as the Process Method.

To know more about the Process method, refer to Page 41 of this document.

 Specify HeapMemoryUsage>committed as the Attribute name that reports the initial heap memory.

Note that, by default, eG Enterprise monitors the chosen ‘Attribute’ across all those MBeans to which

it applies.

If a test reports multiple measures, then the MBean and/or attribute name

that is included in each measure specification should belong to the same

domain that was chosen for the first measure.

To identify the name of the attribute, do the following:

o Go to the command prompt on the target Java application host;

o Switch to the <JAVA_INSTALL_DIR>\bin directory.

o Issue the jconsole command.

o Figure 2.108 will then appear.

Add ing /Mod if ying Tests us ing the Integrat ion Console

97

Figure 2.108: Jconsole

o In the Tree structure in the left panel of Figure 2.108 locate the java.lang

domain to which the Mbean of interest to our example belongs.

o Expand the java.lang domain; since the Heap_memory_used measure in our

example is a memory related measure, click on the Memory Mbean within the

java.lang domain.

o The right panel of Figure 2.108 will change to display the Attributes of the

Memory Mbean. The top attribute is the HeapMemoryUsage attribute, which

reports commited heap memory as its sub-attribute.

o Therefore, to drill down to the heap memory committed attribute, click on the

HeapMemoryUsage attribute in the right panel.

o Figure 2.109 will then appear.

Add ing /Mod if ying Tests us ing the Integrat ion Console

98

Figure 2.109: Drilling down to the ‘used’ attribute

o Figure 2.109 displays the sub-attributes of the HeapMemoryUsage attribute.

One of these sub-attrbutes is the used attribute.

o Therefore, against the Attribute name field in Figure 2.107, type both the main

attribute – HeapMemoryUsage- and its sub-attribute – used- separated by the ‘>’

symbol.

 Since the specified attribute reports the used heap memory in bytes, you need to select a

Conversion Factor to convert the bytes into MB (which is the Unit of measurement of this measure).

Therefore, select /1048576 (Bytes to MB) as the Conversion Factor.

 If required, provide an alarm description in the Alarm display string text box.

 Finally, click the Add button in Figure 2.107.

When prompted to configure additional measures for the test, click No to indicate that no more measures need be

added. Doing so will automatically lead you to the Generate tab page (see Figure 2.110).

If the measures were added using auto-discovered MBeans or the ones loaded from a file, then the Domain that you

chose at the time of adding the measures, will be displayed against Domain Name in Figure 2.110. In the case of

our example therefore, java.lang will be displayed as the default Domain Name, if auto-discovered/loaded MBeans

were used for configuring the measures.

Add ing /Mod if ying Tests us ing the Integrat ion Console

99

On the contrary, if the measures were added using the manual entry method, then no Domain Name will be displayed

here. In this case, you will have to manually enter the Domain Name. This means that if the Heap_memory_used

measure in our example had been configured by manually entering the attribute name, then, you will have to

manually specify java.lang as the Domain Name here.

Figure 2.110: Generating the Jmx test

Sometimes, the Attribute that reports the value of a measure could be associated with more than one MBean. In

such a case, by default, eG Enterprise monitors the Attribute across all the MBeans with which it is mapped. If you

want to override this default setting – i.e., if you want the new test to monitor the given Attribute for specific MBeans

only and not all of them – then, you can use the MBeans to be included and MBeans to be excluded text boxes for

this purpose. To instruct the new test to include a few specific MBeans alone in its monitoring scope, provide a

comma-separated list of MBeans in the MBeans to be included text box. Similarly, if you want the test to exclude

specific MBeans from monitoring, provide a comma-separated list of these MBeans in the MBeans to be excluded text

box. Note that these specifications too are not measure-specific and apply to all the measures configured for a test.

Click on the Generate button in Figure 2.110 to generate the measures of the test. Figure 2.111 then appears

allowing you to define the thresholds for the measure that we had configured earlier for the JavaHeapMemory_ex

test in our example.

Figure 2.111: Defining the thresholds for the measures configured for the JavaHeapMemory_ex test

2.7 Modifying/Deleting Tests Added Using the Integration
Console

To delete a test or to modify the configuration and measures of a test that is added using the Integration Console,

follow the steps below:

1. Select the Test option from the Integration Console tile in Figure 2.1.

2. Figure 2.112 will then appear, listing all the tests that have been added using the Integration Console.

Add ing /Mod if ying Tests us ing the Integrat ion Console

100

Figure 2.112: List of tests that pre-exist

3. To delete a test, click the button corresponding to that test in Figure 2.112. You will then be prompted to

confirm deletion (see Figure 2.113).

Figure 2.113: A message box that appears requesting your confirmation to delete a test

4. Click Yes in Figure 2.113 to proceed with the deletion. Click No to cancel the deletion.

5. To modify a test, click the button corresponding to that test in Figure 2.112.

6. Figure 2.114 will then appear displaying the test’s specifications.

Figure 2.114: Modifying a test’s specification

7. For any test chosen for modification, you cannot change the Test name or the Test type. However, all other test

details displayed in the Test tab page of Figure 2.114 can be altered. This includes the Execution mode, the

Port configuration, the OS type (in case of a Script/batch file test), and the DB type (in case of a SQL query-

based test).

8. Once the changes are made, click the Modify button to make sure that the changes take effect.

9. Then, click the Parameter tab page in Figure 2.115, if you want to add new parameters or modify/delete

existing ones.

Add ing /Mod if ying Tests us ing the Integrat ion Console

101

Figure 2.115: Adding/modifying test parameters

10. If any parameter pre-exists for a test, the same will be displayed in the Parameter tab page. While some of

these parameters could have been user-defined, some others could be default parameters that the test type

supports. For instance, tests of type Jmx and Snmp come bundled with a default set of parameters. You can

modify/delete a user-defined parameter, but can only modify (and not delete) a default parameter. For

example, the TargetHost parameter in Figure 2.115 above is a user-defined parameter; this is why, it is

accompanied by a Modify and a Delete button. To delete this parameter, simply click the Delete button

corresponding to it in Figure 2.115. To modify this parameter, click the Modify button corresponding to it.

Figure 2.116 will then appear.

Figure 2.116: Modifying a user-defined parameter

11. Using Figure 2.116, you can change the Parameter name and/or the Default value of a user-defined parameter.

Once the changes are made, click the Modify button to save the changes.

12. Now, take a look at Figure 2.117 below, which depicts the Parameter tab page of a test of type Snmp. As you

can see, only the default parameters of the Snmp test are displayed in Figure 2.116. This is why, these

parameters are accompanied only by a Modify button and not a Delete button. To modify a default parameter,

click the Modify button corresponding to it in Figure 2.117.

Figure 2.117: Viewing the default parameters of an Snmp test

Add ing /Mod if ying Tests us ing the Integrat ion Console

102

13. Figure 2.118 will then appear, using which you can change the Default value of the parameter. Note that you

cannot change the name of a default parameter.

Figure 2.118: Modifying the default value of a default parameter

14. Finally, click the Modify button in Figure 2.118 to make the changes.

15. If required, you can also add new parameters to a test in the Modify mode. For this, just click the Add New

Parameter button in Figure 2.117.

16. Next, click the Measure tab page in Figure 2.117 to make changes to the measure configurations of the test.

17. Figure 2.119 will then appear. If measures have already been configured for the test, then the same will be

displayed in the Measure tab page, as depicted by Figure 2.119.

Figure 2.119: Viewing the measures configured for a test

18. The details displayed for a measure will change according to the type of test to which that measure pertains.

For instance, Figure 2.119 above displays the details of a measure reported by a Custom test. A test of type

Script/Batch File will additionally display a Process Method for each of its measures. Likewise, a test of type

Snmp will additionally display an Object OID, a test of type Perfmon will include a Counter name as part of its

measure specifications, and measures reported by a Jmx test will additionally support an Attribute name. You

can delete a measure displayed in Figure 2.119 by clicking the Delete button corresponding to it. You can even

add new measures by clicking the Add New Measure button in Figure 2.119. To modify an existing measure,

click the Modify button corresponding to it in Figure 2.119.

Add ing /Mod if ying Tests us ing the Integrat ion Console

103

If you want to add more measures to a Jmx test in the Modify mode, note that the new

measures should belong to same Domain and should follow the same MBean discovery

methodology chosen for the old measures. In other words, if the Domain chosen for the

old measures was java.lang, then the new measures should also belong to the java.lang

domain. Likewise, if the MBeans for the old measures were loaded to a file and read from

it, the new measures can also be added using only the MBeans so read.

19. This will invoke Figure 2.120. Using Figure 2.120, you can modify all the details of a measure. Then, click the

Modify button in Figure 2.120 to save the changes.

Figure 2.120: Modifying a measure

20. Finally, click the Generate tab page in Figure 2.119 to regenerate the test. Figure 2.121 will then appear.

Figure 2.121: Modifying the test implementation

21. The contents of the Generate tab page too will change according to the test type. However, regardless of the

test type, you can change all details displayed in the Generate tab page, if required. For instance, for a Custom

test, you can change the following:

 The Class file specification

 The Library file specification

Add ing /Mod if ying Tests us ing the Integrat ion Console

104

 Enable/disable detailed diagnosis for the test

 Alter the detailed diagnosis specification, if it is enabled;

For a Script/Batch File test, you can change the Path of the file displayed in the Generate tab page.

For a SQL query test, you can modify the query to be executed or the stored procedure call.

For a Perfmon test, you can change the name of the performance Object, and Instances to be included or

excluded from monitoring.

For an Snmp test, you can indicate whether the measures pertain to a Single element or Multiple elements. If

Multiple elements is chosen, you can also change the Element ID, the Element status, the Element valid status,

and the Rediscovery period.

For a Jmx test, you can modify the MBeans to be included and/or excluded. The Domain Name however, cannot

be changed.

22. Finally, click the Generate button to generate the test.

23. If a test specification is modified and the test is regenerated, the performance data previously collected by the

test will no longer be available. A warning message to this effect will be displayed when the Generate button is

clicked (see Figure 2.122). Click the OK button in Figure 2.122 to go ahead with the modifications.

Figure 2.122: A warning message that appears when a test is modified and regenerated

2.8 Adding Help Pages for the New Test
eG Enterprise embeds a context-sensitive online help system, which enables users to instantly invoke help pages for

assistance while configuring the tests run by the eG agent or understanding the measures reported by the tests. By

default, the eG manager comes bundled with help pages for the tests it supports out-of-the-box. Each test is

associated with an Admin and a Monitor help page. While the Admin help page describes how the test parameters

are to be configured, the Monitor help page lists the measures reported by the test and explains the significance of

each measure.

For new tests added via the Integration Console plugin however, no such help pages pre-exist. To enable users to

include help pages for these new tests into the eG Enterprise system, you can do either of the following:

 Use the Integration Console itself to create new Admin and Monitor help pages for the new test, OR;

 Create Admin and Monitor help pages using a third-party HTML editor (eg., Editplus, Adobe

Dreamweaver, Microsoft Frontpage, etc.), and use the Integration Console to upload these help pages

to the eG manager;

Add ing /Mod if ying Tests us ing the Integrat ion Console

105

The sub-sections that follow will discuss each of these options in detail:

2.8.1 Creating New Help Pages Using the Integration Console

Let us now define an Admin and a Monitor help page for the MsFileTest_ex that we created in Section 2.1.1. To

begin help page creation, do either of the following:

 Typically, until a new test is properly generated and thresholds are set for its measures in the eG

Enterprise system, you cannot define help pages for that test. This is why, the Help tab page in the

NEW TEST DETAILS page will remain disabled till the Finish button is clicked in Figure 2.111. Clicking the

Finish button will invoke the message box depicted by Figure 2.123. Click the Yes button in the

message box to begin help page creation. This will lead you to the Help tab page of Figure 2.124.

Figure 2.123: A message box requesting your confirmation to define a help page for the new test

 On the other hand, if you click the No button in the message box of Figure 2.123, you will exit the NEW

TEST DETAILS page and return to the INTEGRATION CONSOLE – TEST page, where all the new IC tests will

be displayed. To create a help page for a test that has already been generated, you need to Modify the

specifications of that test. To do this, click the button corresponding to that test in the INTEGRATION

CONSOLE – TEST page. This will take you to the NEW TEST DETAILS page, where you can click the Help

tab page (see Figure 2.124) to begin creating help pages for that test.

Figure 2.124: The Help tab page

Add ing /Mod if ying Tests us ing the Integrat ion Console

106

The Help tab page, as you can see, comes with two sub-tabs: Add and Modify. By default, the Add tab page will be

selected. To create a new help page, you should use the Add tab page only.

The Add tab page provides help page templates in HTML format, which can be easily customized to create the help

pages you want. To create an Admin help page for the MsFileTest_ex, do the following:

1. Select the Use Template option from the Add tab page.

2. Then, from the Available templates list, pick the Admin option.

3. This will bring up the Admin help page template as shown in Figure 2.125.

4. The Admin help page template of Figure 2.125 embeds directions on how to edit the template. You just need to

scan the template for these instructions and follow them. For instance, search the template for the string Enter

the Test Name. Once it is found, remove the string and in its place type the test name, MsFileTest_ex, as

directed. Likewise, look for the following strings in the template, remove them one after another from the

template, and in the place of each, provide the inputs indicated by the corresponding string.

String Help page information

Enter the test purpose Describe the purpose of the MsFileTest_ex

Enter the name of parameter1 Specify the first parameter that is to be configured for the MsFileTest_ex. If

you can recall, while creating the MsFileTest_ex, we had not configured any

special parameters for the test. However, by default, any non-port-based test

added using IC will take TEST PERIOD and HOST as its parameters.

Therefore, type test period as the first parameter.

Describe the parameter This string will appear after parameter1 and parameter2. Provide a description

of the corresponding parameter here.

Enter the name of parameter2 Enter host as parameter 2

The strings in the table above have been highlighted in the template in Figure 2.125.

Figure 2.125: The strings containing instructions on how to edit the Admin template

Add ing /Mod if ying Tests us ing the Integrat ion Console

107

5. Once the HTML block highlighted in Figure 2.125 is edited based on the instructions provided in step 4, the

same block will look as depicted by Figure 2.126.

Figure 2.126: The edited HTML block in the Admin template

6. By default, the template allows you to provide details for a maximum of two parameters. If your test supports

say, one more parameter, and you want to include the details of this additional parameter in the help page,

then, insert a line of the following format just above the tag in the help page template:

<p align=”justify”>Enter the name of parameter 3: Description of parameter 3

<p></p>

For instance, if you are adding an additional parameter named filename into the help page, then, the new line

you insert should be as follows:

<p align=”justify”>FILENAME: The name of the file to be monitored

<p></p>

Multiple lines of the above format can be inserted for every additional parameter the test takes.

7. Likewise, if your test supports only one parameter, then you will have to explicitly remove the entire row of

information available for the second parameter from the template. For instance, if you want to remove the host

parameter from the MsFileTest_ex in our example, then, simply delete the following line of code:

<p align=”justify”>HOST: The host for which the test is being configured

<p></p>

8. No additional parameters exist for the MsFileTest_ex in our example. Similarly, no lines of code need be

removed from the template for the purpose of our example. Therefore, simply proceed to click the Create help

button to generate the Admin help page for MsFileTest_ex. If the help page is generated successfully, then a

message to that effect will appear.

9. The eG Enterprise system will automatically assign a name of the format, <TestName>_Admin, for any Admin

help page you create for an IC-based test using IC. This help page will be automatically saved to the

<EG_MANAGER_INSTALL_DIR>\tomcat\webapps\final\eghelp directory.

Let us now proceed to create a Monitor hlep page for the MsFileTest_ex. For this, do the following:

1. First, select the Use Template option from Figure 2.124.

Add ing /Mod if ying Tests us ing the Integrat ion Console

108

2. Then, from the Available templates list, pick the Monitor option.

3. This will bring up the Monitor help page template.

4. Like the Admin help page template, the Monitor help page template also includes instructions for editing the

template. You just need to scan the template for these instructions and follow them. For instance, search the

template for the string Enter the name of the test. Once it is found, remove the string and in its place type the

test name, MsFileTest_ex, as directed. Likewise, look for the following strings in the template, remove them

one after another from the template, and in the place of each, provide the inputs indicated by the

corresponding string.

String Help page information

Enter the test purpose Describe the purpose of the MsFileTest_ex

Enter the name of measure1 Specify the first measure that is reported by the MsFileTest_ex. For our

example, type File_locks_count here.

Enter the name of measure2 Specify the second measure that is reported by the MsFileTest_ex. For our

example, type Unique_users_count here.

Describe the measure This will appear after measure1 and measure2. Provide a description for the

corresponding measure here.

Specify the unit of measurement This will appear after measure1 and measure2. Provide the unit of

measurement that you have configured for the corresponding measure here.

For the File_locks_count and the Unique_users_count measures in our

example, the unit will be Number.

Provide interpretation (if any) This will be available for both measure1 and measure2. Here, you can explain

how the high or low values of the corresponding measure will impact the

performance of the target server. This is an optional specification. In other

words, if you feel that no interpretation is necessary, then, you can just

remove the string and leave the placeholder blank.

Add ing /Mod if ying Tests us ing the Integrat ion Console

109

The strings in the table above have been highlighted in the template in Figure 2.127.

Figure 2.127: The strings containing instructions on how to edit the Monitor template

5. Once the HTML block highlighted in Figure 2.127 is edited based on the instructions provided at step 4, the

same block will look as depicted by Figure 2.128.

Figure 2.128: The edited HTML block in the Monitor template

6. By default, the template allows you to provide details for a maximum of two measures. If your test supports

say, one more measure, and you want to include the details of this additional measure in the help page, then,

insert a block of HTML code of the following format, just above the </table> tag in the help page template:

<tr>

<th width=”17%” align=”left” valign=”top”>Enter the measure name</th>

<td width=”28%” valign=”top” align=”justify” id=”just”>Briefly describe the measure</td>

<td width=”17%” valign=”top” align=”center”>Specify the unit of measurement for the measure</td>

Add ing /Mod if ying Tests us ing the Integrat ion Console

110

<td width=”38%” valign=”top” align=”justify” id=”just”>Provide interpretation (if any)</td>

</tr>

For instance, say that you are adding an additional measure named Open_files; this measure reports the total

number of files that have been opened on the server by users over the network. The HTML code block that you

insert into the Monitor template for this purpose should be as follows:

 <tr>

 <th width=”17%” align=”left” valign=”top”>Open_files</th>

<td width=”28%” valign=”top” align=”justify” id=”just”>The total number of files that have been
opened on the server by users over the network</td>

<td width=”17%” valign=”top” align=”center”>Number</td>

<td width=”38%” valign=”top” align=”justify” id=”just”>This measurement is an indicator of the
workload on the file server.</td>

</tr>

Multiple blocks of the above format can be inserted for every additional measure that you configure for the test.

7. Likewise, if your test reports only one measure, then you will have to explicitly remove the entire block of code

that is provided for the second measure from the template. For instance, if you want to remove the

Unique_users_count measure from the help page of the MsFileTest_ex in our example, then, simply delete the

following line of code:

<tr>

<th width=”17%” align=”left” valign=”top”>Unique_users_count</th>

<td width=”28%” valign=”top” align=”justify” id=”just”>The number of distinct users with open
files</td>

<td width=”17%” valign=”top” align=”center”>Number</td>

<td width=”38%” valign=”top” align=”justify” id=”just”>Provide interpretation (if any)</td>

</tr>

8. No additional measures are reported by the MsFileTest_ex in our example. Similarly, no lines of code need be

removed from the template for the purpose of our example. Therefore, simply proceed to click the Create help

button to generate the Monitor help page for MsFileTest_ex. If the help page is generated successfully, then a

message to that effect will appear.

9. The eG Enterprise system will automatically assign a name of the format, <TestName>_Monitor, for any

Monitor help page that you create using IC. This help page will be automatically saved to the

<EG_MANAGER_INSTALL_DIR>\tomcat\webapps\final\eghelp directory.

With that, both the Admin and Monitor help pages have been created for the MsFileTest_ex. You can modify the help

pages so created by clicking the Modify tab page in Figure 2.124. This will open Figure 2.129.

Add ing /Mod if ying Tests us ing the Integrat ion Console

111

Figure 2.129: Modifying a help page created using the Integration Console

For modifying an Admin or a Monitor help page, follow the same procedure that has been outlined for creating a help

page.

2.8.2 Uploading Help Pages that Pre-exist to the eG Manager
To achieve this, do the following:

1. First, select the Upload option from Figure 2.130.

Figure 2.130: Uploading the help pages

2. In the File to upload (Admin) text box, specify the full path to the Admin help page to be uploaded. You can use

the Browse button to locate the help page you need.

3. Likewise, in the File to upload (Monitor) text box, specify the full path to the Monitor help page to be uploaded.

Here again, you can use the Browse button alongside to locate the monitor help page.

4. Once the help page locations are specified, click the Upload button to upload them to the eG manager.

5. Once uploaded, the Admin help page will be automatically renamed as TestName>_Admin, and the Monitor

help page will be automatically renamed as <TestName>_Monitor. Moreover, both help pages will be uploaded

to the <EG_MANAGER_INSTALL_DIR>\tomcat\webapps\final\eghelp directory.

Add ing /Mod if ying Tests us ing the Integrat ion Console

112

 It is not mandatory to upload both the Admin and Monitor help pages of a test

simultaneously.

 At any given point in time, you can upload only one Admin help page and/or

one Monitor help page to the eG manager.

Add ing /Mod if ying Layers Us ing the Integrat ion Conso le

113

Adding/Modifying Layers Using
the Integration Console
Once a new test is added using IC, you need to associate that test to a layer for the test functionality to be

implemented in real-time. A test can be associated with a layer that pre-exists or a brand new layer.

This chapter takes the help of an example to explain how a new layer can be created using IC, how it can be

modified (if required), and how a test can be associated with a new/existing layer.

3.1 Adding a New Layer and Associating Tests with the User-
Defined Layer

In this section, we will be creating a new layer named TUXEDO_SERVICES and will be associating a new test named

TuxDomainTest_ex with it. This test has been engineered to report the number of machines and servers running in a

Tuxedo domain.

To create a new layer, do the following:

1. Select the Layer option from the Integration Console tile of the Admin tile menu (see Figure 2.1).

2. Figure 3.1 will then appear with two panels: one listing pre-defined layers and another listing user-defined

layers. The eG Enterprise system represents every application/device that it monitors out-of-the-box using a

hierarchical set of layers. The Pre-defined layers panel lists all those layers that are by default built into the eG

Enterprise system for representing components that are monitored out-of-the-box. The User-defined layers

panel lists only those layers that are custom-defined by users to extend the monitoring capabilities of the eG

Enterprise solution.

Add ing /Mod if ying Layers Us ing the Integrat ion Conso le

114

Figure 3.1: Viewing the list of pre-defined and user-defined layers.

3. To create a new layer, click the Add New Layer button in Figure 3.1. This will open Figure 3.2. In the Layer

name text box in Figure 3.2, enter the name of the new layer. For the purpose of our example, type

TUXEDO_SERVICES_ex against Layer name.

The layer name should be suffixed by _ex.

Figure 3.2: Adding a new layer

Add ing /Mod if ying Layers Us ing the Integrat ion Conso le

115

If more than one pre-defined layer pre-exists, then Figure 3.2 will additionally include a Duplicate flag. By

default, the Duplicate flag is set to No. Set this flag to Yes only if you want the new layer to inherit the

attributes of another user-defined layer. In this case, a Layer to be duplicated drop-down will appear, as

depicted by Figure 3.3. From this drop-down, select the layer, the properties of which need to be acquired by

the new layer being added.

Figure 3.3: Duplicating a layer

4. Then, click the Add button to add the new layer.

5. The newly added layer will now appear in the panel listing user-defined layers, as depicted by Figure 3.4.

Figure 3.4: The new layer listed in the User defined layers panel

6. If you want, you can delete any user-defined layer by clicking the button corresponding to it in Figure 3.4.

7. To associate a test with a user-defined layer, click the button corresponding to the layer name in the User-

defined layers panel of Figure 3.4. This will invoke Figure 3.5. From the Disassociated tests list of Figure 3.5,

select the test(s) you want to associate with the new layer. For the purpose of our example, select the

TuxDomainTest_ex test from the Disassociated tests list.

Add ing /Mod if ying Layers Us ing the Integrat ion Conso le

116

Figure 3.5: Selecting the test to be associated with the user-defined layer

8. Click the < button in Figure 3.5 to move the selected test to the Associated tests list.

9. This will invoke a message box depicted by Figure 3.6 below. By default, once a test is associated with a layer,

that layer will get automatically associated with all components that support that layer. Sometimes, you may

want a test to be associated with only a few components that support that layer and not all of them. In this

case, click the No button in the message box of Figure 3.6. If this is done, then the test will not be associated

with that layer. On the other hand, if you want the test to be associated with all components that support the

layer, click the Yes button. This will transfer the selection to the Associated tests list.

Figure 3.6: A message box requesting your confirmation to associate the test with all components tha tsupport the
chosen layer

10. If for any reason, you want to disassociate a test from a layer, simply select the test from the Associated tests

list and click the > button in Figure 3.5.

11. Finally, click the Update button to save the changes.

3.2 Associating Tests with a Pre-defined Layer
Let us consider another example. Let us try to associate the TuxDomainTest_ex in the example of Section 3.2 with

the Tuxedo Servers layer that pre-exists in the eG Enterprise system. For this, do the following:

1. Focus on the Pre-defined layers list in Figure 3.1. As can be inferred from Figure 3.1, you can neither modify nor

delete a pre-defined layer. However, you can associate/disassociate tests with a pre-defined layer.

Add ing /Mod if ying Layers Us ing the Integrat ion Conso le

117

2. To associate tests with the Tuxedo Servers layer in our example, click the button corresponding to that layer

in the Pre-defined layers list of Figure 3.1.

3. This will open Figure 3.7.

Figure 3.7: Selecting the test to be associated with a pre-defined layer

4. The Associated tests list in Figure 3.7 will display all those tests that are already associated with the Tuxedo

Servers layer. To associate the TuxDomainTest_ex with this layer, first select that test from the Disassociated

tests list of Figure 3.7. Then, click the < button.

5. This will invoke a message box depicted by Figure 3.8 below. By default, once a test is associated with a layer,

that layer will get automatically associated with all components that support that layer. Sometimes, you may

want a test to be associated with only a few components that support that layer and not all of them. In this

case, click the No button in the message box of Figure 3.8. If this is done, then the test will not be associated

with that layer. On the other hand, if you want the test to be associated with all components that support the

layer, click the Yes button. This will transfer the selection to the Associated tests list.

Figure 3.8: A message box requesting your confirmation to associate the test with all components tha tsupport the
chosen layer

6. If for any reason, you want to disassociate a test from a layer, simply select the test from the Associated tests

list and click the > button in Figure 3.7.

7. Finally, click the Update button to save the changes.

Add ing /Mod if ying New Component Types Us ing the Integrat ion Conso le

118

Adding/Modifying New
Component Types Using the
Integration Console

eG Enterprise provides out-of-the-box monitoring support to over 150 applications/devices, 10+ operating systems,

and 9+ virtualization platforms. Specialized monitoring models are available in eG for each of these

applications/devices/systems/hypervisors. If eG does not offer a monitoring model out-of-the-box for any

application/device that is operational in your environment, then you can use the Integration Console to build a

monitoring model for that type of component. This can be achieved by:

 Creating a new component-type for the custom application/device using the Integration Console;

 Building a layer stack for the new component-type;

 Associating/Disassociating performance and configuration tests for that component-type;

This chapter discusses each of these steps in detail, using an illustrated example. In this example, we will be creating

a monitoring model for the Tuxedo_Domain_Server component. As part of this exercise, we will be:

 Creating a new Tuxedo_Domain_Server component-type;

 Building a layer model for this component-type by grouping together some user-defined and pre-

defined layers;

 Disassociating some tests that are by default mapped to the layers supported by this component-type;

 Associating configuration tests with this component-type

Add ing /Mod if ying New Component Types Us ing the Integrat ion Conso le

119

4.1 Creating a New Component-type Using the Integration
Console

To achieve this, follow the steps below:

1. Select the Component option from the Integration Console tile of Figure 2.1.

2. Figure 4.1 will then appear.

Figure 4.1: Viewing the user-defined and pre-defined component types

3. Figure 4.1 displays two panels: one is the Pre-defined components panel, which lists all component-types that

are supported out-of-the-box by the eG Enterprise system, and the other is the User-defined components panel,

which lists all custom defined component-types (if any), added using the Integration Console.

4. To add a new component type, click the Add New Component Type button in Figure 4.2. Figure 4.2 will then

appear.

Figure 4.2: Adding a new component type using Integration Console

5. Provide the details of the new component-type in Figure 4.2. This includes:

 Component type: The name of the new component-type, suffixed by _ex. In the case of our example, this

will be Tuxedo_Domain_Server_ex.

 Image name: Specify the Image name that will be displayed below the component type image in the eG

user interface.

Add ing /Mod if ying New Component Types Us ing the Integrat ion Conso le

120

 Choose display image: Select the image that you want to use to represent the new component-type in

the eG user interface.

 Port: If the component-type is port-based, then specify the port number at which the component

listens by default. In the case of our example, leave the port as NULL.

 Site support: Indicate whether/not the component-type supports web sites. If so, set this flag to Yes. If

not, set this flag to No. In the case of our example, set this flag as No.

 Duplicate: This flag will appear only if one/more user-defined components pre-exist. You can set this flag

to Yes if you want the new component-type to inherit the properties of an existing user-defined

component-type. In this case, you will be additionally required to pick the Component Type to be

duplicated (see Figure 4.3).

Figure 4.3: Duplicating a component type

Once a component type to be duplicated is chosen, the Display image, Port, and Site support settings of that

component-type will automatically apply to the component-type being added.

On the other hand, if the new component-type is not a duplicate of an existing user-defined component-type,

set this flag to No. In this case, you will have to explicitly define a display image, port, and site support settings

for the new component-type.

6. Finally, click the Add button in Figure 4.3 to add the new component-type.

7. The newly added component-type will then appear as a User-defined component (see Figure 4.4).

Figure 4.4: The User-defined components panel displaying the newly added component-type

Add ing /Mod if ying New Component Types Us ing the Integrat ion Conso le

121

8. You can modify the details of the new component-type, if you so need, by clicking the button corresponding

to it in Figure 4.4. Figure 4.5 will then appear. In the Modify mode, you can change the Image name and choose

a different display image for the component. However, you cannot change the name of the Component type;

nor can you change the Port and Site support settings. After making the required changes, click the Update

button in Figure 4.5 to save the changes.

Figure 4.5: Modifying the details of a user-defined component-type

9. You can even delete a user-defined component-type by clicking the button corresponding to that

component-type in the User defined components list of Figure 4.4.

Pre-defined components can neither be modified nor deleted.

4.2 Building a Layer Model for a New Component Type
Let us now build a layer model for the new component-type we added in Section 4.1 – i.e., the

Tuxedo_Domain_Server_ex. Say, the layer model of this component comprises of two pre-defined layers of the eG

Enterprise system - Operating System and Network – and one user-defined layer named TUXEDO_SERVICES_ex.

To build such a model, follow the steps below:

1. Click the button corresponding to the Tuxedo_Domain_Server_ex component in the User-defined

components list of Figure 4.4.

2. Figure 4.6 will then appear. From the Disassociated layers list of Figure 4.6, select the TUXEDo-SERVICES_EX

layer that you want to associate with the Tuxedo_Domain_Server_ex component-type.

Add ing /Mod if ying New Component Types Us ing the Integrat ion Conso le

122

Figure 4.6: Selecting the layer to be associated with the new component-type

3. Then, click the < button in Figure 4.6 to move the selection to the Associated layers list (see Figure 4.7).

Figure 4.7: Associating a layer with a new component-type

4. Similarly, associate the Network and Operating System layers too with the Tuxedo_Domain_Server_ex (see

Figure 4.8).

Add ing /Mod if ying New Component Types Us ing the Integrat ion Conso le

123

Figure 4.8: Associating multiple layers with the new component-type

5. If you need, you can even disassociate a layer from a component-type by selecting that layer from the

Associated layers list and clicking the > button. For our example however, you need not disassociate any of the

layers in the Associated layers list.

6. Now that the layer model of the Tuxedo_Domain_Server_ex is complete, click the Update button in Figure 4.8 to

save the changes.

7. Typically, layers are to be associated in the same order in which they should appear in the layer model

representation in the eG monitoring console. Moreover, since state of the layers below impact the state of the

layers above, exercise caution when positioning layers in your layer model. By default however, the eG

Enterprise system reserves the bottom-most position to the pre-defined Operating System layer. This is why,

when a new layer model is built using the Integration Console, and the Operating System layer is included in

that model, eG Enterprise expects this layer to be lowest layer in the layer hierarchy. If not, the eG Enterprise

system throws an exception to this effect.

In the case of our example too (see Figure 4.8), you can see that the Operating System layer is not the last

layer. This is why, as soon as the Update button in Figure 4.8 is clicked, the following error message appears:

Figure 4.9: An error message prompting you to change the position of the Operating System layer

8. Click the OK button in Figure 4.9 to close the message, and then proceed to change the position of the

Add ing /Mod if ying New Component Types Us ing the Integrat ion Conso le

124

Operating System layer. Typically, to change the position of any layer in the layer model, you will have to use

the direction buttons provided to the right of the Associated layers list in Figure 4.9. The table below lists these

buttons and their purpose:

9. To change the position of the Operating System layer in our example, select that layer from the Associated

layers list of Figure 4.9 and click the button. When this is done, the Operating System layer instantly swaps

positions with the Network layer, thus becoming the last layer of the model. If you now click the Update button

to save the changes, you will notice that the error message of Figure 4.9 above does not re-appear.

You can modify the layer model definition of a Pre-defined component by clicking the

button corresponding to that component in the Pre-defined components panel. The rest of

the procedure is the same as outlined in steps 2-9 in this section.

4.3 Associating/Disassociating Tests from a New Component
Type

Typically, once a layer model is defined for a new component-type, all tests that are mapped to each of those layers

will automatically get associated with that component-type. Sometimes, you may want to exclude one or a few of

these tests for a specific component-type. For instance, let us assume that 3 Alcatel switch-related tests are

associated with the Network layer. Since this layer is now mapped to the Tuxedo_Domain_Server_ex component-type

in our example, these 3 Alcatel tests will now run for the Tuxedo_Domain_Server_ex component as well. These

Alcatel tests however will not provide any information that is of significance to a Tuxedo_Domain_Server_ex

component. Hence, it is best that these tests are disassociated from the Tuxedo_Domain_Server_ex component

alone. Let us see, how this can be achieved:

1. Click the button corresponding to the Tuxedo_Domain_Server_ex component-type in the User-defined

components panel of Figure 4.4.

2. This will invoke Figure 4.10. From the Associated tests list of Figure 4.10, select the Alcatel tests that you want

to exclude for this component.

Direction Button Purpose

 Click to push a layer to the bottom of the layer model.

 Click to push a layer to the top of the layer model.

 Click to push a layer a step up.

 Click to push a layer a step down.

Add ing /Mod if ying New Component Types Us ing the Integrat ion Conso le

125

Figure 4.10: Selecting the tests to be disassociated from the new component-type

3. Click the > button to disassociate the chosen tests. This will transfer the selection to the Disassociated tests list

of Figure 4.11.

Figure 4.11: Disassociating tests for a component-type

4. If you want, you can even associate some of the disassociated tests by selecting the tests from the

Disassociated tests list and clicking the < button in Figure 4.11. However, this need not be done for our

example.

Add ing /Mod if ying New Component Types Us ing the Integrat ion Conso le

126

You cannot associate a port-based test with a non-port-based component or vice-versa.

 Finally, click the Update button in Figure 4.11 to save the changes.

You can associate/disassociate performance tests for a Pre-defined component by clicking the

 button corresponding to that component in the Pre-defined components panel. The rest of

the procedure is the same as outlined in steps 2-5 above.

Unlike performance tests, configuration tests are not mapped to any layer. This means that if you want one/more

configuration tests to run on a new component-type, you will have to explicitly map these tests with that component-

type. Let us see how the Drives and Drives Capacity configuration tests can be associated with the

Tuxedo_Domain_Server_ex component in our example. To achieve this, do the following:

1. Click the button corresponding to the Tuxedo_Domain_Server_ex component in the User-defined components

panel of Figure 4.4.

2. Figure 4.12 will then appear. From the Disassociated tests list of Figure 4.12, select the configuration tests that

you want to associate with the Tuxedo_Domain_Server_ex component. Then, click the < button to associate the

selected tests.

Figure 4.12: Selecting the configuration tests to be associated with a new component-type

Add ing /Mod if ying New Component Types Us ing the Integrat ion Conso le

127

You cannot associate a port-based test with a non-port-based component or vice-versa.

3. Finally, click the Update button to save the changes.

You can associate/disassociate configuration tests for a Pre-defined component by clicking

the button corresponding to that component in the Pre-defined components panel. The

rest of the procedure is the same as outlined in steps 2-3 above.

Back ing Up and Resto r ing the Conf igurat ion of eG Enterp r ise

128

Backing Up and Restoring the
Configuration of eG Enterprise
Using the eG Integration Console, you can take a backup of the configurations performed using the Integration

Console module of the eG Enterprise system – for example, new tests / layers / components that were added using

Integration Console. Similarly, you can also restore the backed up configuration any time you need.

To achieve this, select the Backup option from the Integration Console tile of the Admin tile menu (see Figure 2.1).

This will invoke Figure 5.1.

Figure 5.1: Backing up/Restoring the configurations performed using IC

To backup the IC-based configuration changes, click the Backup button in Figure 5.1. To restore the backed up

configurations, click the Revert button in Figure 5.1.

Conc lus ion

129

Conclusion
The eG Enterprise Suite has been specially designed keeping in mind the unique requirements of IT infrastructure

operators. For more information on the eG family of products, please visit our web site at www.eginnovations.com.

For more details regarding eG Enterprise suite of products and the details of the metrics collected by the eG agents,

please refer to the following documents:

 Administering the eG Enterprise Suite

 Monitoring eG Enterprise

 The eG Installation Guide

 The eG Measurements Manuals

We recognize that the success of any product depends on its ability to address real customer needs, and are eager to

hear from you regarding requests for enhancements to the products, suggestions for modifications to the product,

and feedback regarding what works and what does not. Please provide all your inputs as well as any bug reports via

email to sales@eginnovations.com.

http://www.eginnovations.com/
mailto:sales@eginnovations.com

	1. Introduction
	1.1 The Integration Console Architecture
	1.2 System Requirements
	1.3 Licensing

	2. Adding/Modifying Tests Using the Integration Console
	2.1 Adding a Custom Test
	2.1.1 Adding a Custom Performance Test
	2.1.1.1 Adding a Custom Performance Test Without Detailed Diagnosis
	2.1.1.2 Configuring Detailed Diagnosis for a Custom Performance Test

	2.1.2 Adding a Custom Configuration Test
	2.1.2.1 Adding a Descriptor-based Configuration Test
	2.1.2.2 Adding a Non-Descriptor-based Configuration Test

	2.1.3 Test Generator API
	2.1.3.1 System Requirements
	2.1.3.2 Component Classes
	2.1.3.3 Summary of Methods
	2.1.3.4 Writing Tests using the Test Generator API
	2.1.3.5 Writing Detailed Diagnosis Tests
	2.1.3.6 Troubleshooting

	2.2 Adding a Script/Batch File-based Test
	Output of a (non-VB/non-powershell) script for a descriptor-based test
	Output of a VB/powershell script for a descriptor-based test
	Output of a (non-VB/non-powershell) script for a non-descriptor-based test
	Output of a VB/powershell script for a non-descriptor-based test

	2.3 Adding an SQL Query/Stored Procedure-based Test
	2.3.1 Using a SQL Query
	2.3.2 Using Stored Procedure
	A Stored Procedure on MS SQL that returns an ‘Info-based’ result set:
	A Stored Procedure on MS SQL that returns a ‘Non-info-based’ result set:
	A Stored Procedure on Oracle:

	2.4 Adding a Perfmon-based Test
	2.5 Adding an SNMP-based Test
	2.5.1 Adding a Non-Descriptor-Based SNMP Test
	2.5.2 Adding a Descriptor-based SNMP Test

	2.6 Adding a JMX-based Test
	2.6.1 Enabling JMX Support for the JRE of the Target Application
	2.6.1.1 Securing the ‘jmxremote.password’ file
	2.6.1.2 Configuring the eG Agent to Support JMX Authentication

	2.6.2 Adding a New Jmx Test
	2.6.2.1 Adding a Measure Using MBean Auto Discovery
	2.6.2.2 Adding a New Measure by Loading MBeans from a File
	2.6.2.2.1 Uploading an MBean File to the eG Manager Host and Using that File to Add a New Measure
	2.6.2.2.2 Adding a Measure Using an Existing MBean File

	2.6.2.3 Adding a Measure Using the Manual Entry Method

	2.7 Modifying/Deleting Tests Added Using the Integration Console
	2.8 Adding Help Pages for the New Test
	2.8.1 Creating New Help Pages Using the Integration Console
	2.8.2 Uploading Help Pages that Pre-exist to the eG Manager

	3. Adding/Modifying Layers Using the Integration Console
	3.1 Adding a New Layer and Associating Tests with the User-Defined Layer
	3.2 Associating Tests with a Pre-defined Layer

	4. Adding/Modifying New Component Types Using the Integration Console
	4.1 Creating a New Component-type Using the Integration Console
	4.2 Building a Layer Model for a New Component Type
	4.3 Associating/Disassociating Tests from a New Component Type

	5. Backing Up and Restoring the Configuration of eG Enterprise
	6. Conclusion

