Enabling Service Excellence

Monitoring Rocket UniVerse
Database Server

eG Enterprise v6

Restricted Rights Legend

The information contained in this document is confidential and subject to change without notice. No part of this
document may be reproduced or disclosed to others without the prior permission of eG Innovations Inc. eG
Innovations Inc. makes no warranty of any kind with regard to the software and documentation, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose.

Trademarks

Microsoft Windows, Windows 2008, Windows 2012, Windows 7, Windows 8 and Windows 10 are either registered
trademarks or trademarks of Microsoft Corporation in United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.
Copyright

©2016 eG Innovations Inc. All rights reserved.

Table of Contents

MONITORING THE UNIVERSE DATABASE SERVER.......cotiiiiit ittt 1
1.1 UNIVErse Database SEIVICE LAYETc.ccciviiiiiiitiiieiteiei ettt st et ss e teebeste st e be st e s s eseetesbe st et et e s essebeebesbeste st e e ensereanears 2
111 UniVerse Database SESSIONS TESLc.cueueiiiiiireriiiiire ittt bbbttt b bttt r bt es 2
1.1.2 UniVerse Database ACtiVe GroUP LOCKS TESE........ccviiiiiiiiiiiiieieiei ettt ettt sttt aebe st re st sa s saeneans 6
113 UniVerse Database Active RECOTT LOCKS TESE ..ot 9

CONCLUSION

Monitoring the UniVerse Database Server

Monitoring the UniVerse Database
Server

UniVerse is a database, and also a platform for powerful and feature rich business applications. UniVerse is a
MultiValue Database Management System (MVDBMS). MultiValued data structures support nested entities removing
the need to normalize information. These provide storage of complex data types, and allow for a more natural
representation of real world entities such as sales orders or manufacture assemblies. UniVerse also features an
embedded business language suitable for creating complete applications or for encapsulating complex business rules
in client/server or internet based solutions, and in service orientated architecture (SOA). Because of these unique
features, UniVerse databases are frequently found as embedded data sources behind mission-critical business,
financial, engineering and government systems. If such a database is unavailable over the network, even for a brief
while, or is not sized/configured right to handle the session load, or experiences frequent locks, it can adversely
impact the uptime of and user access to the mission-critical services it supports. If such an undesirable outcome is to
be avoided, the UniVerse database server needs to be continuously monitored.

eG Enterprise provides a specialized monitoring model for the UniVerse Database server. Each layer of this model is
mapped to tests that employ native operating system-level commands, network-level pings and UniVerse shell
commands to periodically check on the availability of the database server, track the session load, and look for file
locks in the database. Whenever an abnormality is detected — say, a session overload condition on the database, a
sudden break in the availability of the server, or many and frequent file locks — the tests promptly notify the
database administrators, so that they can instantly initiate remedial measures.

@ Universe Database Service

& Application Processes

@ TcP
& Network

& Operating System

Figure 1.1: Layer model of the UniVerse Database server

The sections that follow will discuss the first layer of Figure 1.1 only, as all other layers have already been dealt with
in the Monitoring Unix and Windows Servers document.

Monitoring the UniVerse Database Server

1.1 Universe Database Service Layer

Using the tests mapped to this layer, the session load on the server and the impact of the locking activity on the
sessions can be ascertained.

1.1.1 UniVerse Database Sessions Test

Administrators can limit the number of sessions that can be established on a UniVerse database server, so as not to
choke the server. At frequent intervals, administrators should monitor the session count on the server and figure out
if the maximum session limit is about to be reached or not. This will enable administrators to proactively detect
potential overload conditions, and take pre-emptive action against the same. This is exactly what the UniVerse
Database Sessions test helps administrators achieve! At configured intervals, this test reports the session load and
overall session usage by the users of the database server, and warns administrators of a probable overload condition
on the server. Additionally, the test also reports the number and type of sessions launched per user, and thus reveals
which user(s) has contributed the most to the overload and the type of sessions responsible for the same. The
details of users and their sessions are also revealed as part of detailed diagnostics. Using these useful problem
pointers, administrators can decide between killing idle sessions to reduce the load on the server or increasing the
session limit to accommodate more number of sessions.

Target of the Test: A UniVerse database server
Agent running the test: An internal agent

Output of the test: One set of results for every user who is currently logged into the database server. Measures
will also be reported for an additional A// descriptor. The session load and usage metrics will be aggregated across all
users and reported for this descriptor.

Parameters of the test:

Monitoring the UniVerse Database Server

R

TEST PERIOD - How often should the test be executed
HOST - The host for which the test is to be configured.
PORT — The port at which the HOST listens. By default, this is 37438

UNIVERSE SHELL PATH — This test uses UniVerse shell commands to pull the desired metrics from the
server. To enable the test to run these commands, provide the path to the bin folder of the UniVerse install
directory. For example, for a Windows installation of UniVerse, the UNIVERSE SHELL PATH can be:
C:|U2|UV. For a Unix installation, your specification can be: |usr|uv

ECLIPSE PATH - U2 DBTools include Eclipse-based tools for programming and administration. Eclipse is
an integrated development environment (IDE). It contains a base workspace and an extensible plug-
in system for customizing the environment. Eclipse is written mostly in Java and its primary use is for
developing Java applications. Where Eclipse IDE is installed, the eG agent should be configured to use the
Eclipse environment for executing the UV shell commands. In this case therefore, type the full path to the
Eclipse home directory. By default however, this parameter is set to none, indicating that by default, the eG
agent runs the commands from the UniVerse shell only and not Eclipse.

INCLUDE LOGGED IN TIME — This test reports detailed diagnostics for the Interactive sessions and
Background sessions measures. By default, the details of these sessions — eg., the user who launched the
sessions, the commands last executed in the sessions, and the terminal that the user logged in from, will be
reported as part of detailed diagnosis. The login time of the user will however, not be reported as part of the
detailed measures by default. This is why, the INCLUDE LOGGED IN TIME flag is set to No by default. To
make sure that the detailed diagnosis includes the login time of the user as well, set this flag to Yes.

DD FREQUENCY - Refers to the frequency with which detailed diagnosis measures are to be generated for
this test. The default is 1:1. This indicates that, by default, detailed measures will be generated every time
this test runs, and also every time the test detects a problem. You can modify this frequency, if you so
desire. Also, if you intend to disable the detailed diagnosis capability for this test, you can do so by specifying
none against DD frequency.

DETAILED DIAGNOSIS - To make diagnosis more efficient and accurate, the eG Enterprise suite embeds an
optional detailed diagnostic capability. With this capability, the eG agents can be configured to run detailed,
more elaborate tests as and when specific problems are detected. To enable the detailed diagnosis capability
of this test for a particular server, choose the On option. To disable the capability, click on the Off option.

The option to selectively enable/disable the detailed diagnosis capability will be available only if the following
conditions are fulfilled:

e The eG manager license should allow the detailed diagnosis capability

e Both the normal and abnormal frequencies configured for the detailed diagnosis measures should not
be 0.

https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Workspace
https://en.wikipedia.org/wiki/Plug-in_(computing)
https://en.wikipedia.org/wiki/Plug-in_(computing)
https://en.wikipedia.org/wiki/Java_(programming_language)

Monitoring the UniVerse Database Server

Metrics reported by the test:

Measurement Measll;:iatment Interpretation
Maximum session limit: Number This measure will only be reported for the ‘All’ descriptor of this
Indicates the maximum test.
number of sessions that can
be launched on the target
UniVerse database server.
Total sessions: Number Using the value that this measure reports for the A/ descriptor,
Indicates the total number of you can gauge how loaded the server is presently. You can
sessions currently opened by then compare the value of this measure with the value of the
this user. For the Al Maximum session limit measure to know if the server is fast
descriptor, this measure will approaching its session limit or can accommodate many more
report the total number of sessions. If the former is true, it indicates a potential overload
open sessions on the target condition on the server. You can then compare the value of this
UniVerse database server, measure across users to know which user is contributing the
regardless of user. most to the overload.
Session usage: Percent A value close to 100% for the A/ descriptor reveals that too

Indicates the percentage of
sessions utilized by this user.
For the A/ descriptor, this
measure will report what
percentage of the maximum
session limit is being used by
all users logged into the
server.

many sessions are currently open on the server, and may soon
cause the server to consume its session limit. If that happens,
then the server will deny access to new session requests. To
avoid this, first check whether the server is sized with adequate
resources to handle additional load, and if so, increase the
session limit of the server.

However, if the server does not have enough processing
power, then you may want to kill the sessions that are idle or
are engaged in inconsequential operations, so that the load on
the server drops; this way, you can make room for newer
sessions as well. To achieve this, first compare the value of this
measure across users to know which user is contributing to the
overload. Then, use the detailed diagnosis of the Interactive
sessions and Background processes measures of that user to
know which sessions of these users are unnecessarily
consuming resources, and target such sessions for termination.

Monitoring the UniVerse Database Server

Interactive sessions:

Indicates the total number of
interactive processes initiated
by this user. For the A/
descriptor, this measure will
report the sum total of
interactive processes initiated
by all users of the database
server.

Number

Background sessions:

Indicates the number of
background processes
initiated by this user. For the
All descriptor, this measure
will report the sum total of all
background processes
initiated by all users of the
database server.

Number

Interactive processes are those that are
initiated by the wuser and run in the
foreground.

Background processes are those that are
initiated by the user using the PHANTOM
command. Phantom processes run in the
background and are useful for long running
or load spreading operations.

If the value of the Session usage measure is
close to 100% for the A/ descriptor, then
compare the value of the Interactive sessions
and Background sessions measure for that
descriptor to know what type of sessions are
causing the overload.

If interactive sessions are contributing to the
overload, then compare the value of the
Interactive sessions measure across users to
know which user has initiated the maximum
number of interactive processes. Then, use
the detailed diagnosis of the Interactive
sessions measure of that user to view the
PID of the interactive processes, the
command that was last executed by each
process, which terminal that user logged in
from, and what time the user logged in. From
this, you can identify the interactive sessions
that have been open for too long a time
running inconsequential commands, and
mark them for termination.

Likewise, if background sessions are
contributing to the overload, then compare
the value of the Background sessions
measure across users to know which user has
initiated the maximum number of background
processes. Then, use the detailed diagnosis
of the Background sessions measure of that
user to view the PID of the background
processes, the command that was last
executed by each process, which terminal
that user logged in from, and what time the
user logged in. From this, you can identify
the background sessions that have been open
for too long a time running inconsequential
commands, and mark them for termination.

Monitoring the UniVerse Database Server

1.1.2 UniVerse Database Active Group Locks Test

UniVerse stores its data in containers known as Files. Static and Dynamic files are the most common files in a
UniVerse database. Both static and dynamic files consist of a number of separate storage sections, known as buffers.
The size and number of these buffers is specified when the file is created, and space is reserved for these on disk.
This is known as the 'primary space' of the file. As records are added to the file, UniVerse distributes the records
across this primary space using a scattering formula based on the record keys. This formula produces the address of
the buffer in which the record should be placed. If a buffer in a file becomes full, and another record is added to the
file that is addressed to the same buffer, the file is said to be 'overflowed'. It cannot use a different buffer to hold the
record, since this would break the allocation scheme. Instead it will extend the file by chaining an additional buffer to
the end of the first buffer — and so on, so that more records are added to the file. The chain of buffers attached to a
specific buffer in the primary space, is known as a 'group'.

When a process needs to read or write a record to or from a file, UniVerse first works out which group should hold
the record to be written or holds the record to be read in the primary space by applying the relevant hashing
algorithm to the record key. Because the group structure can hold more than one record, UniVerse needs to ensure
that only one process at a time can read from, or update an individual group. This prevents one process trying to
scan through a group whilst another process is busy reorganizing it. So it then proceeds to place a lock entry for that
group into the lock table. Because the lock specifies both the file and the group within the file, this does not prevent
another UniVerse process from accessing a different group in the same file at the same time. So different processes
can still read and write a single file safely.

If a file is well sized and records are distributed across the primary space, it should be very rare that two processes
will need access to the same part of the file at the same time, and so there will be few collisions within the group
lock table. If a file is badly sized and records are consigned to long overflow chains of buffers belonging to the same
group, the chances of more than one process needing access to the same group are much higher — and so the
collisions are much higher. And the longer the chains, the longer the time that each lock needs to be held. All of
which means that more processes will spend longer queuing up and waiting for the lock to become available.

This is why, if a processing slowdown is noticed in a UniVerse database, administrators should first check whether
too many group locks are currently active in the database, and identify the mode of these locks. This is where the
UniVerse Database Active Group Locks test helps. For each lock mode, this test reveals the number of active group
locks in that mode. The detailed diagnostics provided by this test provide deep insights into these locks, and in the
process, enables administrators to figure out:

e Which processes are holding what type of lock?

e Which process is holding a lock on which group of which file?

With the help of these details, administrators can identify processes that are unnecessarily holding a lock, and can
unlock the files and groups so locked, so as to ease processing.

Target of the Test: A UniVerse database server

Agent running the test: An internal agent

Monitoring the UniVerse Database Server

Output of the test: One set of results for every group lock mode currently active in the target database. The table
below discusses the probable locking modes and what they represent:

Descriptor Description

EX Exclusive update lock
SH Shared lock

RD Read lock

WR Write lock

IN Information lock

Parameters of the test:

1 TEST PERIOD - How often should the test be executed

2 HOST - The host for which the test is to be configured.

3. PORT — The port at which the HOST listens. By default, this is 31438
4

UNIVERSE SHELL PATH — This test uses UniVerse shell commands to pull the desired metrics from the
server. To enable the test to run these commands, provide the path to the bin folder of the UniVerse install
directory. For example, for a Windows installation of UniVerse, the UNIVERSE SHELL PATH can be:
C:|U2|UV. For a Unix installation, your specification can be: |usr|uv

5. ECLIPSE PATH - U2 DBTools include Eclipse-based tools for programming and administration. Eclipse is
an integrated development environment (IDE). It contains a base workspace and an extensible plug-
in system for customizing the environment. Eclipse is written mostly in Java and its primary use is for
developing Java applications. Where Eclipse IDE is installed, the eG agent should be configured to use the
Eclipse environment for executing the UV shell commands. In this case therefore, type the full path to the
Eclipse home directory. By default however, this parameter is set to none, indicating that by default, the eG
agent runs the commands from the UniVerse shell only and not Eclipse.

https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Workspace
https://en.wikipedia.org/wiki/Plug-in_(computing)
https://en.wikipedia.org/wiki/Plug-in_(computing)
https://en.wikipedia.org/wiki/Java_(programming_language)

Monitoring the UniVerse Database Server

6. DETAILED DIAGNOSIS - To make diagnosis more efficient and accurate, the eG Enterprise suite embeds an
optional detailed diagnostic capability. With this capability, the eG agents can be configured to run detailed,
more elaborate tests as and when specific problems are detected. To enable the detailed diagnosis capability
of this test for a particular server, choose the On option. To disable the capability, click on the Off option.

The option to selectively enable/disable the detailed diagnosis capability will be available only if the following
conditions are fulfilled:

e The eG manager license should allow the detailed diagnosis capability

e Both the normal and abnormal frequencies configured for the detailed diagnosis measures should not
be 0.

Metrics reported by the test:

Measurement Measurt_ement Interpretation
Unit
Active group locks: Number Compare the value of this measure across modes to identify
Indicates the number of the mode which most of the group locks are in.
active group locks in this If the database server has been frequently experiencing
mode. processing bottlenecks, you can use the detailed diagnosis of

this measure to identify the processes that are holding the
locks in that mode, the users who initiated the processes, the
files and groups that are locked, the file system in which the
files exist, and the host from which the lock originated. With
the help of this information, administrators can instantly isolate
the processes that are holding the locks unnecessarily and the
users who are running those processes. Such processes can
later be killed or the lock they hold released to clear the
processing bottleneck.

Monitoring the UniVerse Database Server

1.1.3 UniVerse Database Active Record Locks Test

UniVerse record and file locks control access to records and files among concurrent user processes. To control access
to records and files, UniVerse supports two levels of lock granularity:

e Fine granularity of record locks
e Coarse granularity of file locks

Granularity refers to the level at which a process or program acquires a lock. Record locks affect a smaller element,
the record, and provide a fine level of granularity, whereas file locks affect a larger element, the file, and produce a
coarse level of granularity. Lock compatibility determines what a user’s process can access while other processes
have locks on records or files. Record locks allow more compatibility because they coexist with other record locks,
thus allowing more transactions to take place concurrently. However these “finer-grained” locks provide a lower
isolation level. File locks enforce a high isolation level, more concurrency control, but less compatibility. Lock
compatibility decreases and isolation level increases as strength and granularity increase. This may increase the
possibility of deadlocks at high isolation levels. Within each granularity level, the strength of the lock can vary.
UniVerse supports the following locks (in order of increasing strength):

e Shared record lock
e Update record lock
e Shared file lock
e Intent file lock

Exclusive file lock

The locks become less compatible as the granularity, strength, and number of locks increase. Therefore the number
of lock conflicts increase, and fewer users can access records and files concurrently. Weaker locks can always be
promoted to stronger locks or escalated to a coarser level of granularity if needed.

Whenever users complaints regarding data inaccessibility increase, it is good practice for administrators to check if
too many file/record locks are being held, and if so, what their strength is. The UniVerse Database Active Record
Locks test provides administrators with this information, instantly! This test automatically discovers the types of locks
currently active in the target UniVerse database and reports the count of locks held per type. From the lock types,
administrators can quickly infer the strength of the locks. If too many strong locks are active on the database, then
the detailed diagnostics provided by this test can be used to identify the processes holding the locks, the users who
own the processes, and the file and records locked. This way, administrators can precisely isolate those processes
that are unnecessarily holding the locks and can initiate measures to have those locks released.

Target of the Test: A UniVerse database server

Agent running the test: An internal agent

Monitoring the UniVerse Database Server

Output of the test: One set of results for every lock type currently active in the target database. The table below
discusses the probable lock types and what they represent:

Descriptor Description

RU Update record lock

RL Shared record lock

FS Shared file lock

IX Shared file lock with intent to acquire an

exclusive file lock

FX Exclusive file lock

XU Exclusive lock set by CLEAR.FILE
CR Shared file lock set by RESIZE
XR Exclusive file lock set by RESIZE

Parameters of the test:

1. TEST PERIOD - How often should the test be executed
HOST - The host for which the test is to be configured.
PORT — The port at which the HOST listens. By default, this is 31438

A

UNIVERSE SHELL PATH — This test uses UniVerse shell commands to pull the desired metrics from the
server. To enable the test to run these commands, provide the path to the bin folder of the UniVerse install
directory. For example, for a Windows installation of UniVerse, the UNIVERSE SHELL PATH can be:
C:|U2|UV. For a Unix installation, your specification can be: |usr|uv

5. ECLIPSE PATH - U2 DBTools include Eclipse-based tools for programming and administration. Eclipse is
an integrated development environment (IDE). It contains a base workspace and an extensible plug-
in system for customizing the environment. Eclipse is written mostly in Java and its primary use is for
developing Java applications. Where Eclipse IDE is installed, the eG agent should be configured to use the
Eclipse environment for executing the UV shell commands. In this case therefore, type the full path to the
Eclipse home directory. By default however, this parameter is set to none, indicating that by default, the eG
agent runs the commands from the UniVerse shell only and not Eclipse.

https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Workspace
https://en.wikipedia.org/wiki/Plug-in_(computing)
https://en.wikipedia.org/wiki/Plug-in_(computing)
https://en.wikipedia.org/wiki/Java_(programming_language)

Monitoring the UniVerse Database Server

6. DETAILED DIAGNOSIS - To make diagnosis more efficient and accurate, the eG Enterprise suite embeds an
optional detailed diagnostic capability. With this capability, the eG agents can be configured to run detailed,
more elaborate tests as and when specific problems are detected. To enable the detailed diagnosis capability
of this test for a particular server, choose the On option. To disable the capability, click on the Off option.

The option to selectively enable/disable the detailed diagnosis capability will be available only if the following

conditions are fulfilled:

e The eG manager license should allow the detailed diagnosis capability

e Both the normal and abnormal frequencies configured for the detailed diagnosis measures should not

be 0.

Metrics reported by the test:

Measurement Measurt_ement Interpretation
Unit
Active record locks: Number Compare the value of this measure across types to determine

Indicates the number of
active file/record locks of this

type.

the strength of the majority of locks currently held.

The table below discusses how each type of locks impact user

access:
Lock type | Allows Prevents Is ignored
(strength) | other users | other users | if the
to acquire from current
acquiring user
already
owns
Shared file | ¢ Shared e Update e Shared
lock record record record
lock lock lock
e Shared file | o Exclusive e Update
lock file lock record
e Intent file lock
lock e Shared file
lock
e Intent file
lock
e Exclusive
file lock

Monitoring the UniVerse Database Server

Lock type | Allows Prevents Is ignored
(strength) | other users | other users | if the
to acquire from current
acquiring user
already
owns
Update No locks e Shared e Update
record lock record record
lock lock
e Update e Exclusive
record file lock
lock
e Shared file
lock
e Intent file
lock
e Exclusive
file lock
Shared file | ¢ Shared e Update e Shared file
lock record record lock
lock lock e Intent file
e Shared file | o« Intent file lock
lock lock .
e Exclusive
e Exclusive file lock
file lock
Intent file | Shared e Update e Intent file
lock record lock record lock
lock .
e Exclusive
e Shared file file lock
lock
e Intent file
lock
e Exclusive

file lock

Monitoring the UniVerse Database Server

Lock type
(strength)

Allows
other users
to acquire

Prevents
other users
from
acquiring

Is ignored
if the
current
user

already
owns

Shared
record
lock

e Exclusive
file lock

Exclusive file | No locks .

lock

e Update
record
lock

e Shared file
lock

e Intent file
lock

e Exclusive
file lock

If too many strong locks are held, you can use the detailed
diagnosis of this measure to identify the processes that are
holding the strong locks, the users who initiated the processes,
the files and records that are locked, the file system in which
the files exist, and the host from which the lock originated.
With the help of this information, administrators can instantly
isolate the processes that are holding the locks unnecessarily
and the users who are running those processes. Such
processes can later be killed or the lock they hold released to
clear processing bottlenecks (if any).

Conclusion

Conclusion

This document has described in detail the monitoring paradigm used and the measurement capabilities of the eG
Enterprise suite of products with respect to the UniVerse Database Server. For details of how to administer and use
the eG Enterprise suite of products, refer to the user manuals.

We will be adding new measurement capabilities into the future versions of the eG Enterprise suite. If you can
identify new capabilities that you would like us to incorporate in the eG Enterprise suite of products, please contact
support@eginnovations.com. We look forward to your support and cooperation. Any feedback regarding this manual
or any other aspects of the eG Enterprise suite can be forwarded to feedback@eginnovations.com.

14

mailto:support@eginnovations.com

