
Monitoring Docker

Restricted Rights Legend

The information contained in this document is confidential and subject to change without notice. No part of this

document may be reproduced or disclosed to others without the prior permission of eG Innovations, Inc. eG

Innovations, Inc. makes no warranty of any kind with regard to the software and documentation, including, but not

limited to, the implied warranties of merchantability and fitness for a particular purpose.

Trademarks

Microsoft Windows, Windows 2008, Windows 7/8/10, Windows 2012 and Windows 2016 are either registered

trademarks or trademarks of Microsoft Corporation in United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Copyright

© 2016 eG Innovations, Inc. All rights reserved.

The copyright in this document belongs to eG Innovations, Inc. Complying with all applicable copyright laws is the

responsibility of the user.

Table of Contents

INTRODUCTION .. 1

1.1 How does eG Enterprise Monitor the Docker? ... 3

1.2 Pre-requisites for Monitoring Docker in an Agent based approach... 3

1.3 Pre-requisites for Monitoring Docker in an Agentless approach ... 3

MONITORING THE DOCKER ... 5

2.1 The Docker Engine Layer ... 5

2.1.1 Docker Service Status Test.. 5

2.1.2 Docker Storage Test .. 7

2.1.3 Docker Events Test ... 9

2.1.4 Docker Images Test ... 12

2.1.5 Docker Images - Performance Test ... 15

2.2 The Docker Containers Layer ... 18

2.2.1 Docker Containers - Status Test .. 19

2.2.2 Docker Containers - Uptime Test .. 22

2.2.3 Docker Containers - Connectivity Test ... 24

2.2.4 Docker Containers - Performance Test ... 26

CONCLUSION ... 34

INTRODUCTION

1

Introduction
Docker is an open platform for developing, shipping, and running applications. Docker is designed to deliver your

applications faster. With Docker you can separate your applications from your infrastructure and treat your

infrastructure like a managed application. Docker helps you ship code faster, test faster, deploy faster, and shorten

the cycle between writing code and running code. Docker does this by combining a lightweight container

virtualization platform with workflows and tooling that help you manage and deploy your applications.

At its core, Docker provides a way to run almost any application securely isolated in a container. The isolation and

security allow you to run many containers simultaneously on your host. The lightweight nature of containers, which

run without the extra load of a hypervisor, means you can get more out of your hardware.

Docker has two major components:

 Docker: the open source container virtualization platform.

 Docker Hub: the Software-as-a-Service platform for sharing and managing Docker containers.

Docker uses a client-server architecture. The Docker client talks to the Docker daemon, which does the heavy lifting

of building, running, and distributing the Docker containers. Both the Docker client and the daemon can run on the

same system, or you can connect a Docker client to a remote Docker daemon. The Docker client and daemon

communicate via sockets or through a RESTful API.

Figure 1: The Docker architecture

INTRODUCTION

2

The Docker daemon runs on a host machine. The user does not directly interact with the daemon, but instead

through the Docker client.

The Docker client, in the form of the docker binary, is the primary user interface to Docker. It accepts commands

from the user and communicates back and forth with a Docker daemon.

To understand Docker’s internals, you need to know about three components:

 Docker images: A Docker image is a read-only template. For example, an image could contain an Ubuntu

operating system with Apache and your web application installed. Images are used to create Docker

containers. Docker provides a simple way to build new images or update existing images, or you can

download Docker images that other people have already created. Docker images are the build component

of Docker.

 Docker registries: Docker registries hold images. These are public or private stores from which you upload

or download images. The public Docker registry is provided with the Docker Hub. It serves a huge

collection of existing images for your use. These can be images you create yourself or you can use images

that others have previously created. Docker registries are the distribution component of Docker.

 Docker containers: Docker containers are similar to a directory. A Docker container holds everything that is

needed for an application to run. Each container is created from a Docker image. Docker containers can be

run, started, stopped, moved, and deleted. Each container is an isolated and secure application platform.

Docker containers are the run component of Docker.

Due to the lightweight architecture of the docker and fast accessibility of the applications, Docker is gaining a rapid

foothold among IT giants. As continuous access to the applications is the key in such environments, even the

smallest slip in the performance of the Docker would result in huge losses. To ensure the 24x7 availability of the

Docker and high performance rate, administrators need to closely monitor the performance and status of the Docker

and its associated components, promptly detect abnormalities, and fix them before end-users notice.

eG Enterprise offers a specialized Docker monitoring model that monitors each of the key indicators of the

performance of Docker - such as the images, containers etc. - and proactively alerts administrators to potential

performance bottlenecks, so that administrators can resolve the issues well before end-users complain.

Figure 2: The layer model of Docker server

Each layer of Figure 2 above is mapped to a variety of tests, each of which report a wealth of useful information

related to the docker server. Using these metrics, administrators can find quick and accurate answers to the following

performance queries:

 Is the docker service installed?

 What is the current status of the docker service?

INTRODUCTION

3

 How well the data space and metadata space of the docker server is utilized?

 How many events were triggered on the containers of the docker server? Which type of event was triggered

the maximum and the minimum? – is it the create events or start events or stop events or die events?

 What is the total count of the docker images in the server? How many images are used to create the

containers?

 What is the disk space utilization of the images that are mapped to the containers?

 How many containers are created from each image of the docker server? How many containers are actually

running and how well the CPU, disk and memory resources are utilized by those containers?

 How many containers are available in the server and among them how many containers are currently

running? How many containers are added recently and how many are actually removed?

 What is the uptime of each container?

 Is the container available over the network?

 Are the read and write storage processor (SP) caches used optimally? Which storage processor's cache may

require right-sizing, and which cache is it - read or write?

 What is the disk space utilization of each container?

 How well data is transmitted and received from each container?

 What is the rate of errors that are transmitted through each container?

 How well the memory is utilized by each container?

 How well data is read from and written to each container?

1.1 How does eG Enterprise Monitor the Docker?
eG Enterprise employs both agentbased and agentless approach to monitor the Docker.

1.2 Pre-requisites for Monitoring Docker in an Agent based
approach

In an agent based approach, the eG agent communicates with the docker using sudo commands. Therefore, in the

test configuration page, the USESUDO parameter is set to Yes, by default.

1.3 Pre-requisites for Monitoring Docker in an Agentless
approach

In an agentless approach, the eG agent communicates with the docker through the eG agent install user. Provide the

credentials of such a user while adding the Docker component. For an eG agent to collect the required metrics from

the Docker, the eG agent install user should be within a Docker group.

Alternately, if the eG agent install user is not within the Docker group or if the administrators in your environment do

not wish to add a new user to the docker group, then you can do the following to collect the required metrics:

1. Login to the docker host through putty.exe.

2. Upon logging in, navigate to the /etc/sudoers file of the docker. The default user privileges to the server will be

“ALL”.

3. Say for example, if eguser is your eG agent install user, then, provide the following privileges to the eguser:

INTRODUCTION

4

eguser ALL=NOPASSWD: /usr/bin/docker

4. Finally, save the file. Once the necessary user privileges are provided, the target Docker server is ready for

monitoring by the eG Enterprise suite.

Once the aforesaid requirements are fulfilled, the eG agent will report a host of useful metrics revealing the status

and performance of the Docker and present these performance statistics in the eG monitoring model using the

hierarchical layer model representation of Figure 2.

The chapter that follows will discuss each layer of Figure 2 in great detail.

MONITORING THE DOCKER

5

Monitoring the Docker
This chapter deep dives into every layer of the Docker monitoring model, the tests mapped to each layer, and the

measures every test reports. Since the Operating System, Network and TCP layers of the Docker is similar to that of

a Linux server and had been dealt in extensively in Monitoring Unix and Windows servers document, let us now

discuss the layers that are exclusive to the Docker in the forthcoming sections.

2.1 The Docker Engine Layer
The tests mapped to this layer reports the current state of the docker service, the utilization of data and metadata

space of the docker, events triggered on the containers of the docker server, image available in the docker, the

statistics revealing the number of images mapped to containers and those that are not mapped, individual resource

utilization of the containers that are created based on each image etc.

Figure 3: The tests mapped to the Docker Engine layer

2.1.1 Docker Service Status Test

A Docker container created from a Docker image holds everything that is needed for an application to run. In order

to create a Docker container, the Docker service should be up and running without a glitch. If the Docker containers

cannot be created or if the containers become inaccessible, then the applications running on the containers will be

rendered inaccessible to the users causing inconvenience. To avoid such inconvenience to the users accessing the

Docker containers, administrators need to constantly monitor the current state of the Docker service. The Docker

Service Status test exactly helps administrators in this regard!

This test helps administrators to continuously monitor the Docker service and reports the current state of the service.

In addition, this test helps administrators to figure out whether the Docker service is installed and loaded.

 Purpose Helps administrators to continuously monitor the Docker service and reports the current state of

the service. In addition, this test helps administrators to figure out whether the Docker service is

MONITORING THE DOCKER

6

installed and loaded

Target of the

test

A Docker server

Agent

deploying the

test

An internal/remote agent

Configurable

parameters for

the test

1. TEST PERIOD – How often should the test be executed

2. HOST – Specify the host for which the test is to be configured

3. PORT - The port number at which the specified HOST listens. The default is 2375.

4. USESUDO – By default, this flag is set to Yes indicating either of the following:

 The eG agent is using the sudo commands to collect the required metrics from the

target docker server if monitored in an agent based manner or

 The target docker server is monitored in an agentless manner and the eG agent install

user is within a docker group.

If the target docker server is monitored in an agentless manner and the user privileges are

altered in the /etc/sudoers file as mentioned in Section 1.2, then, set this flag to No.

Outputs of the

test

One set of results for the Docker server to be monitored

Measurements

made by the

test

Measurement
Measurement

Unit
Interpretation

Is service installed?:

Indicates whether/not the

Docker service is installed.

 The values reported by this measure and

their numeric equivalents are available in the

table below:

Measure Value Numeric Value

No 0

Yes 1

Note:

This measure reports the Measure Values

listed in the table above while indicating

whether the Docker service is installed or not.

However, in the graph of this measure, this

measure is indicated using only the Numeric

Values listed in the above table.

MONITORING THE DOCKER

7

 Is service loaded?:

Indicates whether/not the

Docker service is loaded.

 The values reported by this measure and

their numeric equivalents are available in the

table below:

Measure Value Numeric Value

No 0

Yes 1

Note:

This measure reports the Measure Values

listed in the table above while indicating

whether the Docker service is loaded or not.

However, in the graph of this measure, this

measure is indicated using only the Numeric

Values listed in the above table.

 Docker service status:

Indicates the current state

of the Docker service.

 If the Docker service is currently running,

then the value of this measure is reported as

Active and if the Docker service is not

running, then the value of this measure is

reported as In active.

The values reported by this measure and

their numeric equivalents are available in the

table below:

Measure Value Numeric Value

In active 0

Active 1

Note:

This measure reports the Measure Values

listed in the table above while indicating

whether the Docker service is active or not.

However, in the graph of this measure, the

state is indicated using only the Numeric

Values listed in the above table.

2.1.2 Docker Storage Test
When the Docker service runs for the first time in the Docker server, a defined quantity of data space and metadata

space is allocated from the Docker volume, using which data can be stored in the Docker container outside of the

boot volume (but within the root file system). By default, the Docker offers thin provisioning facility of volumes which

means that you have a big pool of available storage blocks within the volume and can create block devices such as

virtual disks, of arbitrary size from that pool. The storage blocks will be marked as used or taken from the pool only

when you actually write to it. The storage blocks are mapped to the data space and the metadata space for storage

MONITORING THE DOCKER

8

needs. Here, the Docker images are stored in the data space and the definite data about the docker images are

stored in the metadata space. Since the Docker images are the basic building blocks of the Docker, if the data space

or the metadata space is not sufficient, then new images and new containers based on the images cannot be

created. If sufficient images are not available, then users cannot create new containers and simultaneously

applications will also become inaccessible or the users will have only a limited choice of applications. To avoid such

eventualities, it is inevitable that the data space and metadata space be monitored at regular intervals. The Docker

Storage test helps you in this regard!

This test reports the utilization of data and metadata space within a Docker server and proactively alerts

administrators to potential space crunch, if any.

Note:

This test will run only if the Docker server is installed with the Device Mapper, which is a Linux kernels framework

for mapping physical block devices onto higher-level virtual block devices.

Purpose Reports the utilization of data and metadata space within a Docker server and proactively alerts

administrators to potential space crunch, if any

Target of the

test

A Docker server

An

internal/remot

e agent

An internal/remote agent

Configurable

parameters for

the test

1. TEST PERIOD – How often should the test be executed

2. HOST – Specify the host for which the test is to be configured

3. PORT - The port number at which the specified HOST listens. The default is 2375.

4. USESUDO – By default, this flag is set to Yes indicating either of the following:

 The eG agent is using the sudo commands to collect the required metrics from the

target docker server if monitored in an agent based manner or

 The target docker server is monitored in an agentless manner and the eG agent install

user is within a docker group.

If the target docker server is monitored in an agentless manner and the user privileges are

altered in the /etc/sudoers file as mentioned in Section 1.2, then, set this flag to No.

5. DOCKER USER AND DOCKER PASSWORD- Specify the credentials of the user who has

the right to execute commands

Outputs of the

test

One set of results for the Docker server being monitored

Measurements

made by the

test

Measurement
Measurement

Unit
Interpretation

Data space used:

Indicates the amount of

data space currently

utilized by this server.

GB A low value is desired for this measure. If the

value of this measure is closer to the Data

space total measure, then it indicates that

the Docker server is currently running short

of space. Administrators have to ensure that

sufficient data space is allocated to the

Docker server.

MONITORING THE DOCKER

9

 Data space total:

Indicates the total amount

of data space allocated to

this server.

GB

 Data space utilization:

Indicates the percentage of

data space utilized by this

server.

Percent A high value for this measure indicates that

the Docker server is currently running out of

space.

 Metadata space used:

Indicates the amount of

metadata space currently

utilized by this server.

GB Metadata is data that describes other data.

Meta is a prefix that in most information

technology usages means "an underlying

definition or description."

Metadata summarizes basic information

about data, which can make finding and

working with particular instances of data

easier. For example, author, date created and

date modified and file size are examples of

very basic document metadata. Having the

ability to filter through that metadata makes

it much easier for someone to locate a

specific document.

In addition to document files, metadata is

used for images, videos, spreadsheets and

web pages. The use of metadata on web

pages can be very important. Metadata for

web pages contain descriptions of the page’s

contents, as well as keywords linked to the

content. These are usually expressed in the

form of metatags.

 Metadata space total:

Indicates the total amount

of metadata space

allocated to this server.

GB

 Metadata space

utilization:

Indicates the percentage of

metadata space utilized by

this server.

Percent A low value is desired for this measure.

2.1.3 Docker Events Test

By default, the Docker containers can be created, run, started, stopped, moved, and deleted. These actions are

called events in the Docker events API. By constantly monitoring the events triggered by the Docker, administrators

can identify how many create events were triggered while creating the containers, how many events were triggered

to delete the containers etc. The Docker Events test helps administrators to figure out the various events triggered

by the Docker server.

This test monitors the Docker server and reports the total number of events triggered on the containers of the

Docker server. In addition, this test helps administrators to figure out how many times the start and stop events

MONITORING THE DOCKER

10

were triggered to start and stop the containers. Alongside, administrators can also identify the create events, delete

events and die events that were triggered on the server. Using this test, administrators can easily identify how well

the containers are managed within the Docker server and proactively be alerted to unpleasant eventualities caused

due to the slowdowns in application processing as well as processing bottlenecks.

Purpose Monitors the Docker server and reports the total number of events triggered on the containers

of the Docker server. In addition, this test helps administrators to figure out how many times

the start and stop events were triggered to start and stop the containers. Alongside,

administrators can also identify the create events, delete events and die events that were

triggered on the server.

Target of the

test

A Docker server

Agent

deploying the

test

An internal/remote agent

Configurable

parameters for

the test

1. TEST PERIOD – How often should the test be executed

2. HOST – Specify the host for which the test is to be configured

3. PORT - The port number at which the specified HOST listens. The default is 2375.

4. USESUDO – By default, this flag is set to Yes indicating either of the following:

 The eG agent is using the sudo commands to collect the required metrics from the

target docker server if monitored in an agent based manner or

 The target docker server is monitored in an agentless manner and the eG agent install

user is within a docker group.

If the target docker server is monitored in an agentless manner and the user privileges are

altered in the /etc/sudoers file as mentioned in Section 1.2, then, set this flag to No.

5. DD FREQUENCY – Refers to the frequency with which detailed diagnosis measures are to

be generated for this test. The default is 1:1. This indicates that, by default, detailed

measures will be generated every time this test runs, and also every time the test detects

a problem. You can modify this frequency, if you so desire. Also, if you intend to disable

the detailed diagnosis capability for this test, you can do so by specifying none against DD

FREQUENCY.

6. DETAILED DIAGNOSIS - To make diagnosis more efficient and accurate, the eG

Enterprise suite embeds an optional detailed diagnostic capability. With this capability, the

eG agents can be configured to run detailed, more elaborate tests as and when specific

problems are detected. To enable the detailed diagnosis capability of this test for a

particular server, choose the On option. To disable the capability, click on the Off option.

The option to selectively enabled/disable the detailed diagnosis capability will be available

only if the following conditions are fulfilled:

o The eG manager license should allow the detailed diagnosis capability

o Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Outputs of the

test

One set of results for the target Docker server being monitored

Measurements

made by the
Measurement

Measurement

Unit
Interpretation

MONITORING THE DOCKER

11

test Total events:

Indicates the total number

of events that occurred

during the last

measurement period.

Number The detailed diagnosis of this measure if

enabled, lists the Container ID, Container

Name, Image, Event type and Time at which

each event occurred.

 Create events:

Indicates the number

Create events that occurred

during the last

measurement period.

Number The detailed diagnosis of this measure if

enabled, lists the Container ID, Container

Name, Image, Event type and Time at which

each event was created.

 Delete events:

Indicates the number of

Delete events that occurred

during the last

measurement period.

Number The detailed diagnosis of this measure if

enabled, lists the Container ID, Container

Name, Image, Event type and Time at which

each event was deleted.

 Start events:

Indicates the number of

Start events that occurred

during the last

measurement period.

Number The detailed diagnosis of this measure if

enabled, lists the Container ID, Container

Name, Image, Event type and Time at which

the events were started.

 Stop events:

Indicates the total number

of Stop events that

occurred during the last

measurement period.

Number The detailed diagnosis of this measure if

enabled, lists the Container ID, Container

Name, Image, Event type and Time at which

the events were stopped.

 Die events:

Indicates the number of die

events during the last

measurement period.

Number The detailed diagnosis of this measure if

enabled, lists the Container ID, Container

Name, Image, Event type and Time at which

the die events occurred.

The detailed diagnosis of the Total Events measure lists the containers on which the events occurred.

Figure 4: The detailed diagnosis of the Total Events measure

MONITORING THE DOCKER

12

2.1.4 Docker Images Test

Images are the basic building blocks of the Docker, and are organized in a layered manner. The images are utilized

as read-only templates for building multiple Docker containers using layered Docker filesystems. The containers so

created will share common files and enhance disk usage and downloads on the containers. Once the containers are

created, multiple applications can be installed on them. The applications can also be updated to a new version by

simply building a new layer on the existing images rather than replacing the whole image or entirely rebuilding the

containers. The containers can be mapped to a single image or to multiple images. If a single image is alone over-

utilized in creating the containers or if any image remains unmapped to the containers, then such unmapped images

will remain under-utilized but still will occupy unnecessary disk space. If too many such unmapped images exists,

then the creation of new images may be impacted and applications cannot be bundled to the existing

images/containers resulting in a decreased reusability of disk space, increased disk usage and reduction in the

building speed of the containers. This is why, administrators need to frequently check for the images and the disk

space occupied by those images. The Docker Images test does this check.

This test reports the total number of images that are available on the Docker host/server. In addition, this test helps

administrators to compare the numerical statistics of the images that are mapped to the containers and those that

are not mapped to any container. Likewise, administrators can also be able to figure out the disk space utilization of

images that are mapped to the containers and the disk space utilization of the images that are not mapped to the

containers. Using this test, administrators can figure out the images that are sparsely utilized, the images that are

consuming too much of disk space etc and take remedial actions to restrict the disk space utilization of the images.

Purpose Reports the total number of images that are available on the Docker host/server. In addition,

this test helps administrators to compare the numerical statistics of the images that are mapped

to the containers and those that are not mapped to any container. Likewise, administrators can

also be able to figure out the disk space utilization of images that are mapped to the containers

and the disk space utilization of the images that are not mapped to the containers

Target of the

test

A Docker server

Agent

deploying the

test

An internal/remote agent

MONITORING THE DOCKER

13

Configurable

parameters for

the test

1. TEST PERIOD – How often should the test be executed

2. HOST – Specify the host for which the test is to be configured

3. PORT - The port number at which the specified HOST listens. The default is 2375.

4. USESUDO – By default, this flag is set to Yes indicating either of the following:

 The eG agent is using the sudo commands to collect the required metrics from the

target docker server if monitored in an agent based manner or

 The target docker server is monitored in an agentless manner and the eG agent install

user is within a docker group.

If the target docker server is monitored in an agentless manner and the user privileges are

altered in the /etc/sudoers file as mentioned in Section 1.2, then, set this flag to No.

5. DD FREQEUNCY – Refers to the frequency with which detailed diagnosis measures are to

be generated for this test. The default is 1:1. This indicates that, by default, detailed

measures will be generated every time this test runs, and also every time the test detects

a problem. You can modify this frequency, if you so desire. Also, if you intend to disable

the detailed diagnosis capability for this test, you can do so by specifying none against DD

FREQUENCY.

6. DETAILED DIAGNOSIS - To make diagnosis more efficient and accurate, the eG

Enterprise suite embeds an optional detailed diagnostic capability. With this capability, the

eG agents can be configured to run detailed, more elaborate tests as and when specific

problems are detected. To enable the detailed diagnosis capability of this test for a

particular server, choose the On option. To disable the capability, click on the Off option.

The option to selectively enabled/disable the detailed diagnosis capability will be available

only if the following conditions are fulfilled:

o The eG manager license should allow the detailed diagnosis capability

o Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Outputs of the

test

One set of results for the target Docker server that is being monitored

Measurements

made by the

test

Measurement
Measurement

Unit
Interpretation

Total Images:

Indicates the total number

of images available in the

Docker server.

Number

MONITORING THE DOCKER

14

 Images mapped to

containers:

Indicates the number of

images that are mapped to

the Docker containers.

Number Ideally, the value of this measure should be

high. A low value of this measure indicates

that more number of images are left idle and

more disk space is occupied by unused

images. This may cause potential space

crunch in the disk.

The detailed diagnosis of this measure if

enabled, lists the images and the containers

to which the images are mapped.

 Images not mapped to

any container:

Indicates the number of

images that are not

mapped to any Docker

container.

Number Ideally, the value of this measure should be

low. The detailed diagnosis of this measure if

enabled, lists the images that are not

mapped to any Docker containers.

 Disk space used by

images mapped to

containers:

Indicates the amount of

disk space utilized by the

images that are mapped to

the Docker containers.

MB The detailed diagnosis of this measure if

enabled, lists the images and the containers.

 Disk space used by

images not mapped to

any container:

Indicates the amount of

disk space utilized by the

images that were not

mapped to the Docker

containers.

MB A high value of this measure indicates space

crunch in the disk. The detailed diagnosis of

this measure if enabled, lists the images,

which were not mapped with containers.

The detailed diagnosis of the Images mapped to containers measure lists the Image, Image ID, the containers

mapped to the image, the time at which the container was created and size of the image. Using this measure

administrators can figure out the image that is widely used to create a container.

Figure 5: The detailed diagnosis of the Images mapped to containers measure

MONITORING THE DOCKER

15

2.1.5 Docker Images - Performance Test

A Docker server can have multiple images using which containers are created. In large environments where the

requirements of users vary from minute to minute, it is important for an administrator to cater to their specific needs

by providing the images of their choice so that the users can create the containers and load applications accordingly.

Often administrators may be confused while identifying the needs of the users. An image that is needed today may

not be needed tomorrow to create a container. In such cases, the images may be unutilized but still hold on valuable

disk space. To optimize the disk space and eliminate unused images, administrators are required to analyze the

performance of the images as well as identify the images that are most commonly used by the users. The Docker

Images – Performance test helps administrators in this regard!

This test monitors the images of the Docker server and reports the number of containers created using each image.

By analyzing the number of running containers created from each image and the resource utilization of those

containers, administrators can figure out the image that is widely used by the users to create the containers and

analyze how well the resources are utilized by those containers.

Purpose Monitors the images of the Docker server and reports the number of containers created using

each image. By analyzing the number of running containers created from each image and the

resource utilization of those containers, administrators can figure out the image that is widely

used by the users to create the containers and analyze how well the resources are utilized by

those containers

Target of the

test

A Docker server

Agent

deploying the

test

An internal/remote agent

MONITORING THE DOCKER

16

Configurable

parameters for

the test

1. TEST PERIOD – How often should the test be executed

2. HOST – Specify the host for which the test is to be configured

3. PORT - The port number at which the specified HOST listens. The default is 2375.

4. USESUDO – By default, this flag is set to Yes indicating either of the following:

 The eG agent is using the sudo commands to collect the required metrics from the

target docker server if monitored in an agent based manner or

 The target docker server is monitored in an agentless manner and the eG agent install

user is within a docker group.

If the target docker server is monitored in an agentless manner and the user privileges are

altered in the /etc/sudoers file as mentioned in Section 1.2, then, set this flag to No.

5. DOCKER USER and DOCKER PASSWORD – Specify the credentials of the user who is

authorized to execute the docker commands on the target server.

6. CONFIRM PASSWORD – Confirm the DOCKER PASSWORD by retyping it here.

7. WEBPORT – By default, the Docker server listens on 2375. This implies that while

monitoring a Docker server via an SSL-enabled environment, the eG agent, by default,

connects to port 2375 of the Docker server to pull out metrics. In some environments

however, this default port may not apply. In such a case, against the WEBPORT

parameter, you can specify the exact port at which the Docker server in your environment

listens so that the eG agent communicates with that port.

8. DETAILED DIAGNOSIS - To make diagnosis more efficient and accurate, the eG

Enterprise suite embeds an optional detailed diagnostic capability. With this capability, the

eG agents can be configured to run detailed, more elaborate tests as and when specific

problems are detected. To enable the detailed diagnosis capability of this test for a

particular server, choose the On option. To disable the capability, click on the Off option.

The option to selectively enabled/disable the detailed diagnosis capability will be available

only if the following conditions are fulfilled:

o The eG manager license should allow the detailed diagnosis capability

o Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Outputs of the

test

One set of results for each image available on the target Docker server that is being monitored

Measurements

made by the

test

Measurement
Measurement

Unit
Interpretation

Total containers:

Indicates the total number

of containers that were

mapped to this image.

Number The detailed diagnosis of this measure if

enabled, lists the name of the containers.

Compare the value of this measure across the

images to identify the image to which

maximum number of containers are mapped.

MONITORING THE DOCKER

17

 Running containers:

Indicates the number of

containers that are created

from this image and are

currently in Running state.

Number Ideally, the value of this measure should be

high. A low value for this measure is a cause

of concern. The detailed diagnosis of this

measure if enabled, lists the containers that

are currently in Running state and the

resource utilization of the containers.

 CPU utilization of

containers:

Indicates the percentage of

CPU utilized by the

containers (created from

this image) that are

currently in Running state.

Percent This measure is only applicable for the Docker

server 1.5 and above. A sudden increase or

decrease in the value of this measure could

be a cause of concern.

 Memory used by

containers:

Indicates the amount of

memory utilized by the

containers (created from

this image) that are

currently in Running state.

MB This measure is only applicable for Docker

server 1.5 and above. A low value is desired

for this measure. A high value of this

measure indicates that the Docker is running

out of space.

 Memory utilization of

containers:

Indicates the percentage of

memory utilized by the

containers (created from

this image) that are

currently in Running state.

Percent This measure is only applicable for the Docker

server 1.5 and above. A value close to 100%

indicates that the memory is running out of

space.

 Disk space used by

image:

Indicates the amount of

disk space utilized by this

image.

MB Ideally, the value of this measure should be

low. A significant increase in the value of this

measure could be a cause of concern.

The detailed diagnosis of the Total containers measure lists the containers that were mapped to an image.

MONITORING THE DOCKER

18

Figure 6: The detailed diagnosis of the Total containers measure

The detailed diagnosis of the Running containers lists the containers that are currently running and the split up

resource utilization (CPU, memory and memory usage) for each of the listed containers.

Figure 7: The detailed diagnosis of the Running containers measure

2.2 The Docker Containers Layer
This layer monitors the docker containers and reports the performance of each container, the uptime of the

container, the network connectivity to each container and the resource ad memory utilization of each container etc.

Figure 1.1: The tests mapped to the Docker Containers layer

MONITORING THE DOCKER

19

2.2.1 Docker Containers - Status Test

Docker containers can be built within seconds based on a Docker image. In large environments where multiple

containers are created simultaneously, administrators may actually want to keep track on the containers that are

currently running, the containers that are currently stopped, and the containers that were removed etc so that

containers that are sparsely used and containers that crashed can be identified easily. The Docker Containers - Status

test helps administrators to optimize the containers and enhance the overall performance of the Docker server.

This test monitors the containers available in the Docker server and reports the numerical statistics of the total

containers, the containers in Running state, the containers that were added, the containers that were removed etc.

In addition, this test reports the containers that are not running for a time duration above the specified limit and the

containers that are utilizing disk space above the specified limit. By analyzing this, administrators can figure out the

overall performance of the Docker server and identify bottlenecks if any.

Purpose Monitors the containers available in the Docker server and reports the numerical statistics of the

total containers, the containers in Running state, the containers that were added, the containers

that were removed etc. In addition, this test reports the containers that are not running for a

time duration above the specified limit and the containers that are utilizing disk space above the

specified limit

Target of the

test

A Docker server

Agent

deploying the

test

An internal/remote agent

MONITORING THE DOCKER

20

Configurable

parameters for

the test

1. TEST PERIOD – How often should the test be executed

2. HOST – Specify the host for which the test is to be configured

3. PORT - The port number at which the specified HOST listens. The default is 2375.

4. USESUDO – By default, this flag is set to Yes indicating either of the following:

 The eG agent is using the sudo commands to collect the required metrics from the

target docker server if monitored in an agent based manner or

 The target docker server is monitored in an agentless manner and the eG agent install

user is within a docker group.

If the target docker server is monitored in an agentless manner and the user privileges are

altered in the /etc/sudoers file as mentioned in Section 1.2, then, set this flag to No.

5. SIZE LIMIT IN MB – By default, the disk space utilized by each container may vary

according to the size of the container. Sometimes, the containers may be over-utilizing the

disk space which when left unnoticed may hamper the creation of new containers. To

figure out such containers, you can specify a disk space limit beyond which the containers

can be termed as large sized container. For example, if you wish to monitor the number of

containers that are utilizing disk space above 50 MB, then specify 50 against this text box.

6. TIME LIMIT IN WEEKS- For this test to report the numerical statistics of the containers

that were not started/running, set a valid value against this parameter. For example, if you

wish to report the containers that were not started for more than 3 weeks, then set 3

against this text box.

7. DD FREQUENCY – Refers to the frequency with which detailed diagnosis measures are to

be generated for this test. The default is 1:1. This indicates that, by default, detailed

measures will be generated every time this test runs, and also every time the test detects

a problem. You can modify this frequency, if you so desire. Also, if you intend to disable

the detailed diagnosis capability for this test, you can do so by specifying none against DD

FREQUENCY.

8. DETAILED DIAGNOSIS - To make diagnosis more efficient and accurate, the eG

Enterprise suite embeds an optional detailed diagnostic capability. With this capability, the

eG agents can be configured to run detailed, more elaborate tests as and when specific

problems are detected. To enable the detailed diagnosis capability of this test for a

particular server, choose the On option. To disable the capability, click on the Off option.

The option to selectively enabled/disable the detailed diagnosis capability will be available

only if the following conditions are fulfilled:

o The eG manager license should allow the detailed diagnosis capability

o Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Outputs of the

test

One set of results for the Docker server being monitored

Measurements

made by the
Measurement

Measurement

Unit
Interpretation

MONITORING THE DOCKER

21

test Total containers:

Indicates the total number

of containers in this server.

Number The detailed diagnosis of this measure if

enabled, lists the name of the container, the

container ID, the image used to create the

container, the container creation time, the

status of the container and the size of the

container.

 Running containers:

Indicates the number of

containers that are in

Running state.

Number A high value of this measure indicates that

more number of containers are in running

state as a result more number of applications

can be accessed actively. To know which

containers are currently running, use the

detailed diagnosis capability of this measure.

 Stopped containers:

Indicates the number of

containers that are

currently not running in this

server.

Number To know more about the containers that are

currently not running, use the detailed

diagnosis capability of this measure (if

enabled).

 Added containers:

Indicates the number of

containers that were

created during the last

measurement period.

Number The detailed diagnosis of this measure, if

enabled, lists the names of the containers

that were created.

 Removed containers:

Indicates the number of

containers that were

removed from this server

during the last

measurement period.

Number The detailed diagnosis of this measure, if

enabled, lists the containers that were

removed.

If too many containers are removed, then the

users may not be able to access the hosted

applications thus leading to a performance

bottleneck of the Docker server.

Administrators are therefore required to keep

a check on the containers that are removed

from the Docker server.

 Large size containers:

Indicates the number of

containers that were using

more disk space than the

limit configured against the

SIZE LIMIT IN MB

parameter.

Number A low value is desired for this measure. The

detailed diagnosis of this measure if enabled,

lists the names of the containers that are

over-utilizing the disk space.

 Containers not started

for long time:

Indicates the number of

containers that were not

running for more than the

configured TIME LIMIT IN

WEEKS.

Number Ideally, the value of this measure should be

low. The detailed diagnosis of this measure if

enabled, lists the containers that are not

running for longer time.

MONITORING THE DOCKER

22

The detailed diagnosis of the Total Containers measure lists all the containers that were created and the images that

were used to create those containers.

Figure 8: The detailed diagnosis of the Total Containers measure

2.2.2 Docker Containers - Uptime Test

In environments where Docker server is used extensively, it is essential to monitor the uptime of critical containers

within the Docker server. By tracking the uptime of each of the containers, administrators can determine what

percentage of time a container has been up. Comparing this value with service level targets, administrators can

determine the most trouble-prone areas of the infrastructure.

In some environments, administrators may schedule periodic reboots of their containers. By knowing that a specific

container has been up for an unusually long time, an administrator may come to know that the scheduled reboot

task is not working on a container.

The Docker Containers - Uptime test included in the eG agent monitors the uptime of critical containers in the target

Docker server.

Purpose monitors the uptime of critical containers in the target Docker server

Target of the

test

A Docker server

Agent

deploying the

test

An internal/remote agent

MONITORING THE DOCKER

23

Configurable

parameters for

the test

1. TEST PERIOD – How often should the test be executed

2. HOST – Specify the host for which the test is to be configured

3. PORT - The port number at which the specified HOST listens. The default is 2375.

4. USESUDO – By default, this flag is set to Yes indicating either of the following:

 The eG agent is using the sudo commands to collect the required metrics from the

target docker server if monitored in an agent based manner or

 The target docker server is monitored in an agentless manner and the eG agent install

user is within a docker group.

If the target docker server is monitored in an agentless manner and the user privileges are

altered in the /etc/sudoers file as mentioned in Section 1.2, then, set this flag to No.

5. DD FREQUENCY – Refers to the frequency with which detailed diagnosis measures are to

be generated for this test. The default is 1:1. This indicates that, by default, detailed

measures will be generated every time this test runs, and also every time the test detects

a problem. You can modify this frequency, if you so desire. Also, if you intend to disable

the detailed diagnosis capability for this test, you can do so by specifying none against DD

FREQUENCY.

6. DETAILED DIAGNOSIS - To make diagnosis more efficient and accurate, the eG

Enterprise suite embeds an optional detailed diagnostic capability. With this capability, the

eG agents can be configured to run detailed, more elaborate tests as and when specific

problems are detected. To enable the detailed diagnosis capability of this test for a

particular server, choose the On option. To disable the capability, click on the Off option.

The option to selectively enabled/disable the detailed diagnosis capability will be available

only if the following conditions are fulfilled:

o The eG manager license should allow the detailed diagnosis capability

o Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Outputs of the

test

One set of results for each container available in the Docker server being monitored

Measurements

made by the
Measurement

Measurement

Unit
Interpretation

MONITORING THE DOCKER

24

test Has the container been

restarted?:

Indicates whether/not this

container was rebooted.

 The values reported by this measure and

their numeric equivalents are available in the

table below:

Measure Value Numeric Value

No 0

Yes 1

Note:

This measure reports the Measure Values

listed in the table above while indicating

whether /not this container was rebooted.

However, in the graph of this measure, the

measure is indicated using only the Numeric

Values listed in the above table.

 Uptime of the container

during the last measure

period:

Indicates the time duration

for which this container has

been up since the last time

this test ran

Secs If this container has not been rebooted

during the last measurement period and the

agent has been running continuously, this

value will be equal to the measurement

period. If this container was rebooted during

the last measurement period, this value will

be less than the measurement period of the

test. The accuracy of this metric is dependent

on the measurement period - the smaller the

measurement period, greater the accuracy.

 Total uptime of the

container:

Indicates the total time

that this container has

been up since its last

reboot.

Mins Administrators may wish to be alerted if a

container has been running without a reboot

for a very long period. Setting a threshold for

this metric allows administrators to determine

such conditions.

2.2.3 Docker Containers - Connectivity Test

When the Docker starts, it creates a virtual interface called “Ethernet bridge” on the Docker server. The Ethernet

bridge automatically forwards packets to/from the Docker to the external network interfaces. Every time, the Docker

creates the containers, it creates a pair of “peer” interfaces that are like opposite ends of a pipe. The packets sent

through one of the peer interfaces will be received by the other peer interface. By binding the peer interfaces to the

Ethernet bridge, the Docker creates a virtual subnet shared between the Docker server and every Docker container

so as to ensure uninterrupted communication between the Docker server and the Docker containers. For a

connection to be uninterrupted, it is essential to keep track of the network delay as well as the packet loss. The

Docker Containers – Connectivity test helps administrators to keep track of such delays and loss.

This test monitors the network connectivity to the Docker containers from an external location.

Purpose Monitors the network connectivity to the containers from an external location

Target of the

test

A Docker server

MONITORING THE DOCKER

25

Agent

deploying the

test

An internal/remote agent

Configurable

parameters for

the test

1. TEST PERIOD – How often should the test be executed

2. HOST – Specify the host for which the test is to be configured

3. PORT - The port number at which the specified HOST listens. The default is 2375.

4. USESUDO – By default, this flag is set to Yes indicating either of the following:

 The eG agent is using the sudo commands to collect the required metrics from the

target docker server if monitored in an agent based manner or

 The target docker server is monitored in an agentless manner and the eG agent install

user is within a docker group.

If the target docker server is monitored in an agentless manner and the user privileges are

altered in the /etc/sudoers file as mentioned in Section 1.2, then, set this flag to No.

5. PACKETSIZE – Here, specify the size of the packets used for the test.

6. PACKETCOUNT – Here, specify the number of packets to be transmitted during the test.

7. TIMEOUT – Specify the maximum time (in seconds) that the test should wait for the

response to a transmitted packet. A response received after the TIMEOUT period is

ignored by the test. The default timeout period is 100 seconds.

8. PACKETINTERVAL – Represents the interval (in milliseconds) between successive packet

transmissions during the execution of the test for a specific target.

Outputs of the

test

One set of results for each container available in the target Docker server being monitored

Measurements

made by the

test

Measurement
Measurement

Unit
Interpretation

Network availability of

container:

Indicates whether/not the

network connection to this

container is available.

Percent A value of 100 indicates that this container is

accessible over the network. The value 0

indicates that the container is inaccessible.

Typically, the value 100 corresponds to a

Packet loss of 0.

 Avg network delay:

Indicates the average delay

between transmission of

packets to this container

and receipt of the response

to the packet at the source.

Secs Ideally, the value of this measure should be

low.

 Min network delay:

The minimum time

between transmission of a

packet and receipt of the

response back.

Secs A significant increase in the minimum round-

trip time is often a sure sign of network

congestion.

MONITORING THE DOCKER

26

 Packet loss:

Indicates the percentage of

packets lost during

transmission from source to

target and back.

Percent Packet loss is often caused by network buffer

overflows at a network router or by packet

corruptions over the network. The detailed

diagnosis for this measure provides a listing

of routers that are on the path from the

external agent to target server, and the

delays on each hop. This information can be

used to diagnose the hop(s) that could be

causing excessive packet loss/delays.

2.2.4 Docker Containers - Performance Test

This test monitors each container available in the Docker and reports the CPU utilization, I/O processing, memory

related statistics such as memory utilization, paging in/paging outs, errors that were detected etc. Using this test,

administrators can easily figure out processing/memory bottlenecks and rectify the same before the users complain

of slow responsiveness of the containers.

Note:

This test will be supported only for the Docker server version 1.5 and above.

Purpose Monitors each container available in the Docker and reports the CPU utilization, I/O processing,

memory related statistics such as memory utilization, paging in/paging outs, errors that were

detected etc

Target of the

test

A Docker server

Agent

deploying the

test

An internal/remote agent

MONITORING THE DOCKER

27

Configurable

parameters for

the test

1. TEST PERIOD – How often should the test be executed

2. HOST – Specify the host for which the test is to be configured

3. PORT - The port number at which the specified HOST listens. The default is 2375.

4. USESUDO – By default, this flag is set to Yes indicating either of the following:

 The eG agent is using the sudo commands to collect the required metrics from the

target docker server if monitored in an agent based manner or

 The target docker server is monitored in an agentless manner and the eG agent install

user is within a docker group.

If the target docker server is monitored in an agentless manner and the user privileges are

altered in the /etc/sudoers file as mentioned in Section 1.2, then, set this flag to No.

5. DOCKER USER and DOCKER PASSWORD – Specify the credentials of the user who is

authorized to execute the docker commands on the target server

6. CONFIRM PASSWORD – Confirm the DOCKER PASSWORD by retyping it here.

7. WEBPORT – By default, the Docker server listens on 2375. This implies that while

monitoring a Docker server via an SSL-enabled environment, the eG agent, by default,

connects to port 2375 of the Docker server to pull out metrics. In some environments

however, this default port may not apply. In such a case, against the WEBPORT

parameter, you can specify the exact port at which the Docker server in your environment

listens so that the eG agent communicates with that port.

8. DETAILED DIAGNOSIS - To make diagnosis more efficient and accurate, the eG

Enterprise suite embeds an optional detailed diagnostic capability. With this capability, the

eG agents can be configured to run detailed, more elaborate tests as and when specific

problems are detected. To enable the detailed diagnosis capability of this test for a

particular server, choose the On option. To disable the capability, click on the Off option.

The option to selectively enabled/disable the detailed diagnosis capability will be available

only if the following conditions are fulfilled:

o The eG manager license should allow the detailed diagnosis capability

o Both the normal and abnormal frequencies configured for the detailed diagnosis

measures should not be 0.

Outputs of the

test

One set of results for each container available in the Docker server being monitored

Measurements

made by the

test

Measurement
Measurement

Unit
Interpretation

Disk space usage:

Indicates the amount of

disk space utilized by this

container.

MB The detailed diagnosis of this measure if

enabled, lists the containers in this server.

 Data received rate:

Indicates the rate at which

the data was received by

this container.

Mbps A sudden increase or decrease in the value of

this measure could be a cause of concern.

MONITORING THE DOCKER

28

 Incoming traffic:

Indicates the rate at which

packets were received by

this container.

Pkts/sec A significant increase or decrease in the value

of this measure may alter traffic condition in

the Docker server.

 Errors received:

Indicates the number of

errors occurred while data

was received by this

container.

Number Ideally, the value of this measure should be

zero.

 Packets dropped during

reception:

Indicates the number of

packets dropped by this

container during reception.

Number Ideally, the value of this measure should be

zero.

 Data transmit rate:

Indicates the rate at which

the data was transmitted

by this container.

Mbps

 Outgoing traffic:

Indicates the rate at which

packets were transmitted

by this container.

Pkts/sec

 Errors transmitted:

Indicates the number of

errors occurred while data

was transmitted by this

container.

Number Ideally, the value of this measure should be

zero.

 Packets dropped during

transmission:

Indicates the number of

packets dropped by this

container during

transmission.

Number Ideally, the value of this measure should be

zero.

 CPU utilization:

Indicates the percentage of

CPU that is currently

utilized by this container.

Percent Comparing the value of this measure across

the containers will enable you to accurately

identify the container on which CPU-intensive

applications are executing.

MONITORING THE DOCKER

29

 CPU utilization in

kernelmode:

Indicates the percentage of

CPU utilized by this

container in kernel mode.

Percent A processor in a server has two different

modes: user mode and kernel mode. The

processor switches between the two modes

depending on what type of code is running

on the processor. Applications run in user

mode, and core operating system

components run in kernel mode.

In Kernel mode, the executing code has

complete and unrestricted access to the

underlying hardware. It can execute any CPU

instruction and reference any memory

address. Kernel mode is generally reserved

for the lowest-level, most trusted functions of

the operating system. Crashes in kernel mode

are catastrophic; hence they will halt the

entire container.

A high value for this measure indicates that

the container is taking too much of CPU

resources to execute processes in kernel

mode.

 CPU utilization in

usermode:

Indicates the percentage of

CPU utilized by this

container in user mode.

Percent In User mode, the executing code has no

ability to directly access hardware or

reference memory. Code running in user

mode must delegate to system APIs to access

hardware or memory. Due to the protection

afforded by this sort of isolation, crashes in

user mode are always recoverable. Most of

the code running on the containers will

execute in user mode. User mode processes

communicate and use the kernel through the

Kernel API and system calls.

 Memory used:

Indicates the amount of

memory that is currently

utilized by this container.

MB

 Memory limit:

Indicates the maximum

amount of memory that is

allocated to this container.

MB

 Memory utilization:

Indicates the percentage of

memory utilized by this

container.

Percent A high value for this measure indicates that

the memory resources of the container is

depleting alarmingly.

 Memory max usage:

Indicates the maximum

amount of memory utilized

by this container.

MB

MONITORING THE DOCKER

30

 Active anonymous

memory :

Indicates the amount of

anonymous memory that

has been identified as

active by the kernel.

MB Anonymous memory is the large, zero-filled

block of memory that is directly mapped by

kernel from the anonymous memory region

when large memory with ideally multiples of

page sizes is required for the containers. The

pages of anonymous memory do not link to

any file on the disk, and are the part of

program's data area or stack.

All anonymous pages are initially active. In

that, some pages will be tagged as inactive

when the kernel sweeps over the memory at

regular intervals. Whenever the inactive

pages are accessed, they are immediately

retagged as active. The inactive pages will be

swapped when the kernel is almost out of

memory, and time comes to swap out to disk.

 Inactive anonymous

memory:

Indicates the amount of

anonymous memory that

has been identified as

inactive by the kernel.

MB

 Cache memory:

Indicates the amount of

memory used by processes

of the control group that

can be associated precisely

with a storage block on this

container.

MB When you read from and write to files on the

disk, the amount of cache memory will

increase. Size of the cache memory depends

on the number of read operations and write

operations performed on this container.

 Active file:

Indicates the amount of

cache memory that has

been identified as active by

the kernel.

MB Pages in the cache memory can be swapped

between active and inactive states similar to

the anonymous memory but the exact rules

used by the kernel to move memory pages

between active and inactive sets are different

from the rules used for the anonymous

memory. The cache memory pages can be

immediately retrieved in a cheaper way when

the kernel needs to reclaim memory while the

anonymous pages and dirty/modified pages

have to be written to disk first before

retrieving process.

 Inactive file:

Indicates the amount of

cache memory that has

been identified as inactive

by the kernel.

MB

 Memory mapped:

Indicates the amount of

memory mapped by the

processes in the control

group.

MB Docker on Linux also makes use of another

technology called cgroups or control

groups. A key to running applications in

isolation is to have them only use the

resources you want. This ensures containers

are good multi-tenant citizens on a host.

Control groups allow Docker to share

available hardware resources to containers

and, if required, set up limits and constraints.

For example, limiting the memory available to

a specific container.

MONITORING THE DOCKER

31

 Page faults:

Indicates the number of

times a process in this

container triggered a page

fault.

Number A page fault occurs when a process accesses

a part of its virtual memory space which is

nonexistent or protected. The former can

happen if the process is buggy and tries to

access an invalid address (it will then be sent

a SIGSEGV signal, typically killing it with the

famous Segmentation fault message). The

latter can happen when the process reads

from a memory zone which has been

swapped out, or which corresponds to a

mapped file: in that case, the kernel will load

the page from disk, and let the CPU complete

the memory access. It can also happen when

the process writes to a copy-on-write

memory zone: likewise, the kernel will

preempt the process, duplicate the memory

page, and resume the write operation on the

process` own copy of the page.

The major page faults are regular faults occur

when the kernel actually has to read the data

from disk, duplicate an existing page, or

allocate an empty page.

 Page major faults:

Indicates the number of

times a process in this

container triggered a major

page fault.

Number

 Page ins:

Indicates the number of

pages that were added to

the control group of this

container.

Number

 Page outs:

Indicates the number of

pages that were not billed

to the control group of this

container.

Number

 Resident set size:

Indicates the amount of

memory that doesn't

correspond to anything on

disk such as stacks and

heaps, and anonymous

memory maps of this

container.

MB

 Huge resident set size:

Indicates the amount of

maximum memory that

doesn't correspond to

anything on disk such as

stacks and heaps, and

anonymous memory maps

of this container.

MB

MONITORING THE DOCKER

32

 Swap memory:

Indicates the amount of

swap memory that is

currently utilized by the

processes in the control

group of this container.

MB An unusually high value for the swap memory

can indicate a memory bottleneck.

 Memory unevictable:

Indicates the amount of

memory that cannot be

reclaimed by this container.

MB Generally, the unevictable memory has been

locked with mlock, and is often used by

crypto frameworks to make sure that secret

keys and other sensitive material never gets

swapped out to disk.

 Writeback:

Indicates the amount of

memory that was written

back in this container.

MB A high value is preferred for this measure.

Normally, the data are first written into the

cache before writing it into the memory or

disk that supports caching. During idle

machine cycles, the data are written from the

cache into the memory or onto the disk at

high speed. In this way, the Write back

caches improve performance and writing

speed than the normal RAM or disk.

 Failures:

Indicates the number of

memory failures that

occurred in this container.

Number Ideally, the value of this measure should be

low.

 Data reads:

Indicates the rate at which

the data was read from this

container.

Mbps Compare the values of these measures across

the containers to identify the slowest

container in terms of processing read and

write operations (respectively).

 Data writes:

Indicates the rate at which

the data were written into

this container.

Mbps

 Data sync:

Indicates the rate at which

the synchronous I/O

operations were performed

on this container.

Mbps In synchronous I/O file, a thread starts a I/O

operation and immediately enters a wait state

until the I/O request has completed such that

the I/O operations of this container are

performed in one-by-one manner so as to

prevent unwanted data traffic.

 Data async:

Indicates the rate at which

the asynchronous I/O

operations were performed

on this container.

Mbps A thread performing asynchronous file I/O

sends an I/O request to the kernel by calling

an appropriate function. If the request is

accepted by the kernel, the calling thread

continues processing another job until the

kernel signals to the thread that the I/O

operation is complete. Therefore, speed of

the I/O operations will be increased.

MONITORING THE DOCKER

33

 Total data:

Indicates the rate at which

the total I/O operations

were performed on this

container.

Mbps

CONCLUSION

34

Conclusion
This document has clearly explained how eG Enterprise monitors the Docker server. We can thus conclude that eG

Enterprise, with its ability to provide in-depth insight into the performance of SAN storage infrastructures, is the ideal

solution for monitoring such environments. For more information on eG Enterprise, please visit our web site at

www.eginnovations.com or write to us at sales@eginnovations.com.

